
Towards an Automatic Analysis of Web Service
Security

Yannick Chevalier1 and Denis Lugiez2 and Michaël Rusinowitch3 ?

1 IRIT, Team LiLac, Université de Toulouse, France. email: ychevali@irit.fr
2 LIF, CNRS, Aix-Marseille Université, France. email: lugiez@lif.univ-mrs.fr

3 LORIA-INRIA-Lorraine, France. email: rusi@loria.fr

Abstract. Web services send and receive messages in XML syntax with some parts

hashed, encrypted or signed, according to the WS-Security standard. In this paper we

introduce a model to formally describe the protocols that underly these services, their

security properties and the rewriting attacks they might be subject to. Unlike other

protocol models (in symbolic analysis) ours can handle non-deterministic receive/send

actions and unordered sequence of XML nodes. Then to detect the attacks we have

to consider the services as combining multiset operators and cryptographic ones and

we have to solve specific satisfiability problems in the combined theory. By non-trivial

extension of the combination techniques of [3] we obtain a decision procedure for in-

security of Web services with messages built using encryption, signature, and other

cryptographic primitives. This combination technique allows one to decide insecurity

in a modular way by reducing the associated constraint solving problems to problems

in simpler theories.

Keywords: Security, Web services, verification, cryptographic protocols, com-
bination of decision procedures, equational theories, rewriting.

1 Introduction

Web services promise to be a standard technology for Internet and enterprise
networks. They require the ability to transmit securely messages in XML syntax
using the SOAP protocol. Messages that travel over the networks can be observed
and modified by intruders. Hence the protocol was extended by W3C for allowing
one to sign and encrypt some parts of the contents. Nevertheless, as for classical
protocols, cryptographic mechanisms are not sufficient for securing Web services.
They can be subject to the same attacks (e.g. man-in-the middle) as classical
cryptographic protocols, but the XML syntax and the specific way messages are
processed (e.g. not examining the full content) gives the opportunity to mount
a new class of attacks, such as XML rewriting attacks, as shown in [1].

Recently many decision procedures have been proposed for analysing crypto-
graphic protocols. These procedures rely on automated deduction and constraint
solving procedures extending semantic unification. Our objective in this work is
? this work has been supported by ACI-Jeunes Chercheurs Crypto, ACI-SI SATIN

and ARA SSIA Cops

to investigate whether these results can be lifted to Web services. First it appears
immediately that the flexible XML format requires one to consider message con-
tents as sets of terms rather than terms: this introduces a first difficulty since no
security decidability results exist yet for protocols using such a data structure.
Second, since messages are only partially parsed by SOAP, the answer to a re-
quest might depend on the implementation: in other words we have to model a
non-deterministic behaviour of the Web service protocols.

A role-based protocol model has been proposed in previous works [2]. This
model admits two versions. In the first one, the equational model, operations
(including decryption) are explicit and the basic operations are deterministic.
We believe that this constraint is inherent to the model, as non-determinism
in equational theories leads to inconsistency. The second model, the pattern-
matching model, relies on patterns to filter incoming messages. It has been widely
studied but proofs in this model are often complex and obscure, and there is no
general combination result that would permit one to extend existing decision
procedures to a new operation (the multiset operator, in our case).

Motivated by these facts, and also for the sake of deriving a uniform frame-
work, we propose a protocol model that is more general than the two commonly
used ones. It represents XML messages as multisets of terms and simulates non-
deterministic behaviours. Moreover decidability and combination results (previ-
ous known only for the equational model [3]) have been lifted to this model. The
proofs are involved and cannot be obtained from the ones in simpler models.

Related work. The Samoa Project project [1] offers a language to express SOAP-
based security protocols which is compiled into the applied π calculus on which
the resolution based system ProVerif is run to verify secrecy and authentica-
tion properties. Our approach is a complementary one since it provides decision
procedures that are complete for finitely many sessions, even with an associative-
commutative XML message constructor and other operators such as Dolev Yao
encryption/decryption. A lot of work has been dedicated to security analysis of
protocols modulo algebraic properties (see e.g. [4–6]). However no decidability
results have been reported for associative or associative-commutative operators,
supporting the combination with useful cryptographic primitives (such as XOR).
To our knowledge, the ones we report here are the first of this kind, and we show
how they apply to deciding security properties of XML services. Our results rely
on extensive use of term rewriting and unification techniques [8].

Paper organization. First, we describe an example of XML-rewriting attacks
in Sec. 2, then we recall the notions of term rewriting we use on our model in
Sec. 3. Sec. 4 formally models service executions by the deductions that can be
performed by intruders and honest agents. In particular we introduce symbolic
derivations as parameterized deductions. They can be viewed as a variant of
strand spaces, a fundamental concept in protocol analysis [9]. Security in this
model reduces to a constraint satisfiability problem. We give an algorithm for
solving it for the case of plain Web services in Sec. 5. Sec. 6 presents a combi-

nation scheme that applies to multiset and cryptographic operators: it provides
us with a decidable analysis of XML protocols.

The long version [10] of this paper contains all missing lemmas and proofs.

2 An example of Web service and XML rewriting attack

Web services can be described as a set of receive/send action between clients and
the provider, where the messages are XML terms following the SOAP format.
Messages are constructed and parsed according to the security policy of the
service which usually requires that some parts of the message are encrypted,
signed using known algorithms like sha1, rsa,. . . , may contain timestamps, make
reference to trusted third parties,. . . . A SOAP message is an envelope consisting
of a mandatory body and of an optional header. The header contains the useful
information about the message and usually has a security part that follows the
WS-security specification defined by the OASIS organization. For instance, Alice
may order a ticket for Bremen for herself to be charged to her account by sending
send the following message to Bob, her correspondent in the travel agency:

<Envelope>

<Header>

<To> http://www.travel-for-free.com/~bob </>

<Security>

<timestamp>2007-04-16T09:56:43Z</>

<signature>

<signedInfo>

<reference URI=#1>a string</>

<signatureValue>another string </>

</></></></>

<Body>

<Order id=1>

<beneficiary>Alice</>

<account>Alice</>

<trip>Bremen</>

</></></>

In the header, the first string is a digest of the body, and the other string is
the encryption of this digest using the private key of Alice. For efficiency pur-
poses, only parts of the messages are encrypted or signed. Since a node la-
belled by a tag ’a’ may have an arbitrary number of elements, we introduce a
unary symbol a() for each tag ’a’ and an associative-commutative multiset con-
structor. For instance, the body of the above message corresponds to the term
Body(Order(beneficiary(Alice) · account(Alice) · trip(Bremen))) where e1 · . . . · en

denotes the multiset {e1, . . . , en}. Another possibility is to replace the multiset
operator by an associative operator for sequences. In Web services, components
of messages are selected by their tag and security policies usually refer to this
name and don’t consider the possibility of multiple occurrences of the same tag.

In our example, the recipient Bob performs several security checks, including
the verification of the signature, then looks for a part of the Body labelled Order,

orders a ticket for the requested trip and charges Alice’s account. Then, he sends
to Alice a SOAP message with a security header containing the digest of the
original message and a body containing an accesscode for the trip encoded by
the public key of the beneficiary (that Alice will transfer to the beneficiary).
Like in the study of cryptographic protocols, we assume that cryptography is
perfect, but we don’t make any particular hypothesis on the implementation of
parsing XML trees. An attacker Charlie may intercept the message and forge a
new one that inserts a new Order item to the Body:

<Order id=2>

<beneficiary>Charlie </>

<account>Alice</>

<trip> Hawaii</>

</>

before the previous Order. An implementation of the service may lead to a suc-
cessful verification of the signature and to sending the accesscode to Charlie
depending on how the XML term is parsed. If the first match of Order is cho-
sen, then Charlie gets the accesscode, since the signature is correct because the
reference to the initial Order is still used. Another implementation could parse
the children of a node from right to left and select the correct Order subterm.
Therefore the behavior of the protocol is non-deterministic which we model by
rules that select a element Order() in a multiset. We shall model the service
by deduction rules and equations that model all the operations that the partici-
pants can do and all algebraic relations that may hold between the operators A
possible abstraction of the security protocol P that supports the service is:

A→B : se(h(order(x, y, z)), SKA) · order(x, y, z)
B→A : se(h(order(x, y, z)), PKA) · se(accesscode(z), PKx)

where h denotes a hashing function, order(x, y, z) denotes the request for trip
z for beneficiary x, with y the account to charge, h is a hash function, access-
code(z) is the code requested to get the ticket from automata, se(x, y) denotes
the encryption of x using key y, PKx is the public key of x, SKx is the private
key of x. The intruder deductive power is given by the classical Dolev-Yao rules
(see [11, 12]) extended by a rule that allows us to select any element in a multi-
set. Some realistic implementations of the service (like the one in Section 4) are
subject to the following attack (assuming that C = I or C is compromised):

A→IB : se(h(order(A, A,Bremen)), SKA)·order(A, A,Bremen)
IA→B : se(h(order(A, A,Bremen)), SKA)·order(C, A,Hawaii)·order(A, A,Bremen)
B→IA : se(h(order(A, A,Bremen)), PKA)·se(accesscode(Hawaii), PKC)

where IA (resp. IB) denotes a malicious agent I masquerading the honest par-
ticipant A (resp. B), and the secret key SKC is known by I.

3 Terms, subterms and ordered rewriting

Basic notions. We consider an infinite set of free constants C and an infinite set
of variables X . For all signatures F (i.e. a set of function symbols with arities),

we denote by T(F) (resp. T(F , X)) the set of terms over F ∪C (resp. F ∪C∪X).
The former is called the set of ground terms over F , while the later is simply
called the set of terms over F . Variables are denoted by x, y, terms are denoted
by s, t, u, v, and finite sets of terms are written E,F, ..., and decorations thereof,
respectively. For finite sets of terms, we abbreviate E∪F by E,F and the union
E ∪ {t} by E, t.

Given a signature F a constant is either a free constant or a function symbol
of arity 0 in F . For a term t, Var(t) is the set of variables occurring in t and by
Cons(t) is the set of constants occurring in t. An atom is either a variable or a
constant and we denote by Atoms(t) the set Var(t) ∪ Cons(t). The application
of a substitution σ to a term t (resp. a set of terms E) is denoted tσ (resp. Eσ).
An equational presentation H = (F , A) is defined by a set A of equations r = t
with r, t ∈ T(F , X). For any equational presentation H the relation =H denotes
the equational theory generated by (F , A) on T(F , X). An H -Unification system
S is a finite set of pairs of terms in T(F , X) denoted by (ui

?= vi)i∈{1,...,n}. The
ground substitution σ satisfies S , denoted by σ |= S , iff for all i ∈ {1, . . . , n}
uiσ =H viσ. Syntactic subterms and positions are defined as usual (see [13, 14]),
and the replacement of the subterm of t by s at position p is denoted by t[p← s],
for a set of positions Π, t[Π ← s] denotes the replacement of all subterms at
position p ∈ Π by s.

Congruences and ordered rewriting. Let < be a simplification ordering on
T(F) 4, total on T(F), such that (i) the minimal element for < is a constant
cmin ∈ C; (ii) each non-free constant is smaller than any non-constant ground
term. Cspe denotes the set containing the constants in F and cmin. Given a
possibly infinite set of equations O on the signature T(F) the ordered rewriting
relation →O is defined by t →O t′ iff there exists a position p in t, an equation
l = r in O, a substitution τ such that t = t[p← lτ], t′ = t[p← rτ], and lτ > rτ .

It has been shown that by applying the unfailing completion procedure to
a set of equations H yields a (possibly infinite) set of equations O such that:
(i) the congruence relations =O and =H are equal on T(F), (ii) the ordered
rewrite relation →O is convergent (i.e. terminating and confluent) on T(F). We
say that O is an o-completion of H . Since the rewrite system →O is convergent
on ground terms, we can define (t)↓O as the unique normal form of the ground
term t for →O . A ground term t is in normal form, or normalised, if t = (t)↓O .
Given a ground substitution σ we denote by (σ)↓O the substitution with the
same support such that x(σ)↓O = (xσ)↓O for all variables x in the support of σ.
A substitution σ is normal if σ = (σ)↓O .

4 Modelling service execution

4.1 A model for secure Web services

Let us first briefly review the situation we want to model. Some simple Web
services are akin to functions in a library. Their execution is triggered by the
4 by definition < satisfies for all s, t, u ∈ T(F) s < t[s] and s < u implies t[s] < t[u]

reception of a request from a client, to which they immediately respond. These
services are advertised by a WSDL specification that defines among other things
the contents of the input and output messages. It is also possible to specify
some cryptographic protection for integrity, confidentiality and authenticity of
a request by means of a published security policy. This policy will constrain ac-
ceptable requests by mandating that some parts have to be signed, encrypted or
integrity protected. These parts are expressed either by identifiers or by XPath
expressions, and we say that these services are protected. Finally, some WS stan-
dards, e.g. BPEL, WS-SecureConversation, and others, permit to express se-
quences of simple service invocations, which we call workflows. We call totally
ordered sequences workflow executions, as they also correspond to traces of ser-
vice workflows.

The analysis of Web services is thus very similar to the one of cryptographic
protocols. A protected service workflow is a composition of roles (client, ser-
vice,. . .), and a workflow execution is akin to a protocol execution. Agents im-
personate the roles in a workflow execution.

This similarity shall not, however, hide the differences at the level of mes-
sages. In the case of cryptographic protocols, the patterns of admissible messages
are fixed, and known by the intruder, whereas security policies just express con-
straints on the presence of some particular subterms at some position in a mes-
sage. Moreover, and since services are in most cases automatically generated,
the verification of a message is likely to be independent of the construction of a
response. Finally, some implementations may return only one node in a hedge
when several ones correspond to an XPath expression, thereby allowing for XML
injection attacks. The work described in this paper focuses on security policies
expressing paths of subterms from the root (envelope) of the message, leaving
general XPath constraints to future work.

Example 1. A client A invokes a service B by sending se(h(order(x, y, z)), SKA)·
order(x, y, z), where x, y and z are instantiated parameters of the client. Then
it receives a response r which is parsed to check that it contains the nodes
se(z, PKA) and se(u, v) at its root, with v = PKx and z = h(order(x, y, z)).

The intruder and the insecurity problem. In the Dolev-Yao model [11], attacks
on protocols are modelled by the addition of a malicious participant, called the
intruder, that controls the network. It can intercept, block and/or redirect all
messages sent by honest agents. It can also masquerade its identity and take
part in the protocol under the identity of an honest participant. Its control of
the communication network is modelled by assuming that all messages sent by
honest agents are sent directly to the intruder and that all messages received
by the honest agents are always sent by the intruder. Besides the control on the
net, the intruder has specific rules to deduce new values and compute messages.
From the intruder’s point of view a finite execution of a protocol is therefore the
interleaving of a finite sequence of messages it has to send and a finite sequence
of messages it receives (and add to its knowledge). Therefore the intruder is
simply an additional role that runs concurrently with the honest participants.

The protocol is insecure if some secret knowledge is revealed during the
execution of the protocol, which is modelled by adding a last step that reveals
the secret. The insecurity problem amounts to finding a sequence of actions of
the intruder such that its composition with the extended protocol is executable.

4.2 Deduction systems

We give a formal model for roles and the execution of roles (including the in-
truder). Messages are ground terms and deduction rules are rewrite rules on sets
of messages representing the knowledge of an agent. Each role derives new mes-
sages from a given (finite) set of messages by using deduction rules. Furthermore,
these derivations are considered modulo the equational congruence =H generated
by the equational axioms satisfied by the function symbols of the signature F .
Let O be an o-completion of H . We write (t)↓ as a short-hand for (t)↓O .

Definition 1 A deduction rule is a rule d : t1, . . . , tn → t with t1, . . . , tn, t terms
s.t. Const((tσ)↓) ⊆ ∪n

i=1Const((tiσ)↓) ∪ Cspe for any ground substitution σ.

This condition is very similar to the origination condition for well-definedness
in [16]. When the equational theory is regular (i.e. the same variables occur on
each side of axioms) then this condition holds iff Var(t) ⊆ Var(t1, . . . , tn).

Example 2. x, y → 〈x, y〉 is a deduction rule when assuming that the set of
equational axioms is empty. This rules allows an agent (who can be the intruder)
to construct a new pair from two values already known.

Deduction rules are the basic ingredients for deduction systems.

Definition 2 A deduction system D is a triple 〈F , R , H 〉 where F is a signature,
R is a set of deduction rules and H is a set of equations between terms in
T(F , X). For each deduction rule d : t1, . . . , tn → t ∈ R , the set GI(d) denotes
the set of ground instances of the rule d modulo H :

GI(d) = {l→ r | ∃σ, ground substitution on F , l =H t1σ, . . . , tnσ and r =H tσ}

where =H is extended to sets of terms in the natural way. The set of rules GID
is defined as the union of the sets GI(d) for all d ∈ R .

Example 3. Let F = {〈 , 〉 , se(,), ·, a()}, RD = {x, y → 〈x, y〉 ;x, y → se(x, y);
se(x, y), y → x; 〈x1, x2〉 → xi;x, y → x · y;x · y → x; a(x) → x;x → a(x)},
H = {x ·y = y ·x, x · (y ·z) = (x ·y) ·z}. The rules associated with a are extended
to any n-ary operator added to the signature representing an XML node. Then
the deduction system D = 〈F , RD , H 〉 describes the classical Dolev-Yao model
with the addition of an associative-commutative operation · and of the rules that
allow us to build multisets with · or to extract parts of a multiset.

Each deduction rule l→ r in GID defines an deduction relation→l→r between
finite sets of terms: given two finite sets of terms E and F we define E →l→r F

if and only if l ⊆ E and F = E, r. We denote →D the union of the relations
→l→r for all l → r such that l → r ∈ GI(d) for some d ∈ R , and by →∗

D the
transitive closure of →D . We simply denote by → the relation →D when there is
no ambiguity about the deduction system D.

Definition 3 A derivation D of length n ≥ 0, is a sequence E0 →D E1 →D
· · · →D En where E0, . . . En are finite set of ground terms such that Ei = Ei−1, ti
for every i ∈ {1, . . . , n}. The term tn is called the goal of the derivation.

Example 4. The previous deduction system has a derivation:

{Ka, 〈se(s,Ka), a〉 , a, b} →D {Ka, 〈se(s,Ka), a〉 , se(s,Ka), a, b}
→D {Ka, 〈se(s,Ka), a〉 , se(s,Ka), s, a, b}

that shows the discovering of a secret s by an intruder that knows the encryption
key Ka, identity of agents and intercepts a message 〈se(s,Ka), a〉. The ground
deduction rules employed are 〈se(s,Ka), a〉 → se(s,Ka) and se(s,Ka),Ka → s

DerD(E) = {t | ∃F s.t. E →∗
D F and t ∈ F} is the set of terms derivable from

E is. We write Der(E) instead of DerD(E) when there is no ambiguity on D.

4.3 Symbolic derivation

Given a deduction system 〈F , R , E〉, a role applies rules in R to construct the
response of step i and tests equalities to check the well-formedness of a message.
Hence the activity of a role can be expressed by a fixed symbolic derivation:

Definition 4 (Symbolic Derivation) A symbolic derivation for deduction system
〈F , R , E〉 is a tuple (V , S , K , In,Out) where V is a finite sequence of variables,
(xi)i∈Ind, indexed by a linearly ordered set (Ind,<), K is a set of ground terms
(the initial knowledge) In, Out are disjoint subsets of Ind and S is a set of
equations such that for all xi ∈ V one of the following holds:

– i ∈ In
– There exists a ground term t ∈ K and an equation xi

?= t in S ;
– There exists a rule l1, . . . , lm → r ∈ R such that S contains the equations

xi
?= r and xαj

?= lj for j ∈ {1, . . . ,m} with αj < i.

A symbolic derivation is closed if In = Out = ∅, in which case it may be sim-
ply denoted by (V , S , K). A substitution σ satisfies a closed symbolic derivation
if σ |=E S .

To improve readability of the examples, we replace every index i in a set of
indices I by the variable xi associated to this index, and we do not model the
equations xi

?= t for t ∈ K , writing t directly when xi is needed, nonetheless
keeping track of these variables in a set VK . We will also employ to denote a
variable appearing only once.

Example 5. The client A of P can be described by the deduction system D of
Ex. 3. Starting from the initial knowledge KA = {a, b,Bremen, SKa, PKa}, the
client applies the following ground instances of deduction rules. First it builds
xA

1 = order(a, a,Bremen) from a,Bremen ∈ KA (ground instance of the rule
x, y, z → order(x, y, z)), then builds xA

2 = h(xA
1) from xA

1 and xA
3 = se(xA

2 , SKa).
Finally it computes and sends xA

4 = xA
3 ·xA

1 , and waits for the response xA
5 . From

xA
5 it extracts two components xA

6 and xA
7 , decrypts xA

6 with SKa and checks
that the result is equal to xA

2 and finally decrypts xA
7 to obtain the accesscode.

A symbolic derivation for this role is (VKA
∪ (xA

i)1≤i≤9, S , KA,
{
xA

5

}
,
{
xA

4

}
) with:

S =

xA

1
?=order(a, a,Bremen) xA

2
?=h(xA

1) xA
3

?=se(xA
2 , SKa)

xA
4

?=xA
3 · xA

1 xA
5

?=xA
6 · xA

5
?=xA

7 ·
xA

6
?=se(xA

8 , PKa) xA
7

?=se(xA
9 , PKa) xA

8
?=xA

2

To compose two symbolic derivations we identify some input variables of
one derivation with some output variables of the other and vice-versa. This
connection should be compatible with the variable orderings inherited from each
component, as detailed in the following definition:

Definition 5 Let C1 = (V1, S1, K1, In1,Out1), C2 = (V2, S2, K2, In2,Out2) be
two symbolic derivations, with disjoint sets of variables and index sets (Ind1, <1)
and (Ind2, <2) respectively. Let I1, I2, O1, O2 be subsets of In1, In2,Out1,Out2

respectively. and assume that there is an order-preserving bijection φ from I1∪I2

to O1∪O2 such that φ(I1) = O2 and φ(I2) = O1. A composition of two symbolic
derivations along the sets I1, O1, I2, O2 is a symbolic derivation

C = (V , φ(S1 ∪ S2), K1 ∪ K2, (In1 ∪ In2) \ (I1 ∪ I2), (Out1 ∪Out2) \ (O1 ∪O2))

where φ is extended to a substitution on terms by setting φ(xi) = xj if φ(i) = j,
V is a sequence of variables indexed by Ind = (Ind1 \ I1) ∪ (Ind2 \ I2), ordered
by a linear extension of the transitive closure of the relation:

<1 ∪ <2 ∪ {(u, v) | v = φ(w) and u <1 w or u <2 w}

and such that the variable of index i in V is equal to the variable of index i in
V1 if i ∈ Ind1, and to the variable of index i in V2 if i ∈ Ind2.

A composition of two symbolic derivations is also a symbolic derivation and
we can compose an arbitrary number of symbolic derivations in the same way.

Example 6. Let us consider the symbolic derivation of the previous example,
and let us assume that the variables are ordered as yA

1 , xA
1 , yB

1 , yB
2 , xA

2 , yA
2 . The

normal execution of the protocol P corresponds to a composition of the two
symbolic derivations of the previous example along I1 = {xA

2 }, O1 = {yA
1 }, I2 =

{xB
1 }, O2 = {yB

1 }, i.e. where xA
2 (resp.xB

1) is replaced by yB
1 (resp. yA

1).

4.4 The formal statement of protocol insecurity

As mentioned in Section 4.1, protocol insecurity can be reduced to the exe-
cutability of the protocol extended by a step revealing a secret. Since we are
interested to decide insecurity for combined deduction systems we will define a
slightly more general problem that is also more modular:

Ordered Satisfiability
Input: a symbolic derivation Ch for 〈F , R , E〉 (protocol), a set of terms

Ki (intruder knowledge), X the set of all variables, C the set of
free constants occurring in Ch and a linear ordering ≺ on X ∪C.

Output: Sat iff there exists a symbolic derivation Ci = (Vi, Si, Ki,
Ini,Outi) for 〈F , R , E〉, a closed composition Ca of Ci and Ch,
and a substitution σ such that σ satisfies Ca and: ∀c ∈ C, x ≺
c implies c /∈ Const(xσ)

4.5 Comparison with pattern-matching and equational models

The pattern-matching model. In this model pattern-matching is used to extract
the components of incoming messages, independently of the feasibility of the
operation by the agent. For instance, if a role A must execute the receive/send
sequence se(x, y)→se(x,K) and if the actual message is se(NB ,K), then pattern-
matching yields the relation x = Nb. This allows us to get rid of the algebraic
properties of explicit destructors (like decryption or projection) and provides the
syntactic Dolev-Yao model. But when the algebraic properties of other operations
like the exclusive or ⊕ are added to the model, this may lead to meaningless
protocols (e.g. not well-defined): a step x ⊕ y → x is unrealistic, but pattern
matching succeeds. In our setting symbolic derivations are well-defined and can
be translated into a well-defined protocol. Therefore decidability results on well-
defined protocols for some signature transfer immediately to symbolic derivations
on the same signature.

The equational model. The original Dolev-Yao model [11] used explicit con-
structors (e.g. for encryption) and destructors (e.g. for decryption) and the cor-
responding equational theory. To retrieve components of a message, pattern-
matching is replaced by an explicit computation using destructors. For instance,
to retrieve x in m = se(x, K) yields the equation x = sd(m,K). The executabil-
ity of the protocol is guaranteed by the satisfiability of the system of equations
modulo the equational theory enriched by axioms stating that a destructor is
the inverse of a constructor. This approach is sound for classical cryptographic
protocols but this no longer the case for non-deterministic security protocols
arising in Web services. If fa extracts the component a() in a multiset m, we
get that fa(m) = a(x1) and fa(m) = a(x2) for m = a(x1) · a(x2), hence we get
a(x1) = a(x2) which leads to some inconsistencies (all terms headed by a are
equal modulo the equational theory.)

5 Plain Web services

In a first abstraction, Web services are protocols that exchange multisets of nodes.
Hence we will consider first a signature that is reduced to a multiset operator, a
constant (the empty multiset) and unary operators. We call Plain Web services
protocols defined on this signature. We shall present now a procedure to de-
cide ordered satisfiability for plain Web services. We note first that the ordered
satisfiability for a deduction system in which one can enclose data in a node a
(rule x → a(x)) or expose the data contained in the node a (rule a(x) → x) is
easily decidable (by [20] and the fact that the deduction system is local and the
equational theory is empty). Then for applying the combination result of next
section, it remains to decide ordered satisfiability problems for the deduction
system associated to the multiset operator that is employed in the construction
and analysis of XML messages. We believe that the proof can be adapted for
sets (with union and subset extraction). A related result for words (i.e. when
the ordering of nodes matters) can be found in [17].

We consider the signature F = {·, 1} with the following equational theory:

E = {x · (y · z) = (x · y) · z (A), x · y = y · x (C), x · 1 = x (U)}

(usually denoted ACU). Our decidability result is independent of the presence
or absence of the (U) axiom. The deduction rules are:

R = {x · y → x, x, y → x · y, → 1}

This theory is regular and the set of variables of the right-hand side is included
in the set of variables of the left-hand side for each rule, hence the rules are
indeed deduction rules. We state now some some basic facts on M = 〈F , R , E〉.

Proposition 1 Let E and t be respectively a set of terms and a term in normal
form modulo E. We have: (i) Const(E) ⊆ DerD(E), (ii) E ⊆ DerD(Const(E));
(iii) DerD(E) = DerD(Const(E)); (iv) t ∈ DerD(E) iff Const(t) ⊆ Const(E).
Proof. Let c ∈ Const(E) be a constant, and e ∈ E be a term such that
c ∈ Const(e). We have therefore e = e′ · c. Thus in one step we have E → E, c.
Since c is arbitrary, we have Const(E) ⊆ DerD(E). We easily see that we also
have E ⊆ DerD(Const(E)) and (i) follows. From this, (ii) follows by double
inclusion. For (iii) we have t ∈ DerD(E) is equivalent to DerD(E) = DerD(E, t),
and thus by (ii) it is equivalent to DerD(Const(E)) = DerD(Const(E, t)). By
contradiction assume there exists c ∈ Const(t) \Const(E). Given the constraint
on constants in deduction rules we have c /∈ DerD(Const(E)) whereas c trivially
is in DerD(Const(E, t)), which contradicts the equality, and thus t ∈ DerD(E) �

The decision procedure is given by Algorithm 1. The completeness of this
algorithm is easy and the correctness derives from Proposition 1.
Complexity. Step one and checking satisfiability of linear equation systems over
positive integers are in NP. Step three can be performed in PTIME.

Theorem 1 Ordered satisfiability of multiset deduction systems is in NP.

Similar results have been obtained for pure AC-symbols under some restrictions
in [18] but they do not cover our case.

Algorithm 1 Ordered satisfiability for multiset deduction systems
Input: - C = (V , S , K , In,Out);

- A finite set of ground terms KD ;
- An ordering ≺ on Var(C) ∪ Const(C).

1: For each variable x in V guess the set of constants Px = {a1, . . . , ak} that may
occur in the solution, where ai ≺ x for i = 1, . . . , k.

2: Check the satisfiability of S by reduction to satisfiability of a set of linear equations
over N by setting x = Σc∈Px(λx,c + 1)c for each variable x ∈ V .

3: Check for each variable x ∈ In that Px ⊆ Const(KD) ∪
S

x′∈Out
x′<V x

Px′

4: If both checks are successful return Sat else fail

6 Protected Web services

Protected Web services are Web services that contain cryptographic operators.
Many results have been obtained for proving security of cryptographic protocols
with various equational theories (xor, . . .), and we want to be able to use these
results in our framework. 5. In this last section we present a combination algo-
rithm that allows us to reuse previous results, either from the equational model or
the pattern-matching model. In particular it provides the first modularity result
covering the pattern-matching model for cryptographic protocols.

From now on, we shall assume that F is the disjoint union of two signatures
F1 and F2, and we assume that E1 (resp. E2) is a consistent equational theory
on F1 (resp. F2). We recall that C is an infinite set of free constants, that X is
an infinite set of variables and that T(F1, X) (resp. T(F2, X)) denotes the set of
terms on F1 ∪ C (resp. F2 ∪ C). The ordering < is a simplification ordering on
T(F , X) total on T(F) and the constant cmin is the minimal element for <.

A term t in T(F1, X) (resp. in T(F2, X)) is called a pure 1-term (resp. a pure
2-term). The term s is alien to the term u if the top operators of s and u are
not both in F1 or both in F2.

Definition 6 Let t be a term in T(F1 ∪ F2, X). The set of its factors is denoted
Factors(t) and is the set of maximal syntactic strict subterms of t that are either
alien to t or atoms. The set of its subterm values is denoted by Sub(t) and is
defined recursively by Sub(t) = {t} ∪

⋃
u∈Factors(t) Sub(u).

For a set of terms E, the set Sub(E) is the union of the subterm values of
the elements of E. A set of equations S is called homogeneous iff it contains only
pure equations. We denote by tδs the term obtained by replacing all subterm
occurrences of s in t by cmin.

Lemma 1. Let l → r be a rule in GI(d) with d : t1, . . . , tn → t and s /∈ Cspe

alien to some ti or t. Then (lδs)↓ → (rδs)↓ is also a rule in GI(d).

5 The freshness of nonces will be handled as for protocols and not discussed here.

Proof. Let σ be a ground normal substitution such that (t1σ, . . . , tnσ)↓ = l
and (tσ)↓ = r. Let us prove that for u ∈ {t1, . . . , tn, t} one has ((uσ)↓δs)↓ =
(u(σδs))↓. This suffices to find a ground instance (lδs)↓ → (rδs)↓ in GI(d). If u
is a variable then σ in normal form implies (uσ)↓ = uσ and thus ((uσ)δs)↓ =
((uσ)↓δs)↓. Otherwise, and since the rule is pure, the assumption implies that s
is alien to u. Since σ is a normal substitution, and since for u ∈ {t1, . . . , tn, t}
the term u is pure, the factors of uσ are in normal form.

These facts and Lemma 10 from [10] imply that for all u ∈ {t1, . . . , tn, t} one
has ((uσ)↓δs)↓ = ((uσ)δs)↓. Since s is alien to the term u we also have (uσ)δs =
u(σδs). By applying a bottom-up normalisation we have u(σδs) =E u(σδs)↓.
Putting together these equalities we obtain a substitution σ′ = (σδs)↓ such that
the rule d instantiated by σ′ is (lδs)↓ → (rδs)↓. �

Let 〈F1, S1, E1〉 and 〈F2, S2, E2〉 be two deduction systems on disjoint signa-
tures. Our combination algorithm relies on the following lemma stating that a
satisfiable closed symbolic derivation for the union of 〈F1, S1, E1〉 and 〈F2, S2, E2〉
can be split into satisfiable symbolic derivations on F1 and F2 respectively. The
abstraction of a term t in a signature Fi, denoted Absi(t), consists in replacing
the maximal subterms of t with root in Fj , j 6= i by new constants.

The abstraction Absi(σ) of a substitution σ in Fi is the substitution such
that for all x in the support of σ, xAbsi(σ) is the abstraction of xσ in Fi. In
the statement of next lemma, Sig(t) designates the signature to which the top
symbol of the term t belongs. From a system of equations S , one notes that one
can derive, by introducing new variables, an equisatisfiable homogeneous set of
equations S1 ∪ S2 such that terms in Si are pure Fi-terms for i = 1, 2.

The proof idea is to “abstract” a solution σ for a symbolic derivation C in
deduction system 〈F1 ∪ F2, S1 ∪ S2, E1 ∪ E2〉 and to apply iteratively Lemma 1
in order to show for i = 1, 2 that Absi(σ) is a solution of the symbolic derivation
in the deduction system 〈Fi, Si, Ei〉.

Lemma 2. Let C = (V , S , K) be a closed derivation satisfied by a normal sub-
stitution σ for the deduction system 〈F1 ∪ F2, S1 ∪ S2, E1 ∪ E2〉. For i = 1, 2 let
Si denote the purification of S 6 and:

Ki ={Absi(t) ∈ Sub(K) |Sig(t) = i and ∃x ∈ V , xσ = t}∪{x ∈ V |Sig(xσ) 6= i}

Then two closed symbolic derivations Ci = (V , Si, Ki) (for i = 1, 2) can be com-
puted such that they are satisfied by Absi(σ) for intruder 〈Fi, Si, Ei〉 respectively.

Algorithm 2 reduces satisfiability of a D-symbolic derivation C to satisfiability
of D1 and D2, symbolic derivations augmented with ordering constraints on the
variables of C and the ordering constraints between variables and constants of C .
A partial symbolic derivation denotes a symbolic derivation for which variables
in V whose index is not in In may have no associated equation in S . This leads
to the following theorem:

6 as in unification

Theorem 2 If the ordered satisfiability problem for closed symbolic derivation
is decidable for two deduction systems 〈F1, S1, E1〉 and 〈F2, S2, E2〉 with disjoint
signatures F1 and F2 then the ordered satisfiability problem for closed symbolic
derivation is decidable for the deduction system 〈F1 ∪ F2, S1 ∪ S2, E1 ∪ E2〉.

Algorithm 2 Combination Algorithm SolveD(C ,≺)
Input: C = (V , S , K , In,Out) where S homogeneous;

A finite set of ground terms KD ;
A linear ordering ≺ on Var(C) ∪ Const(C).

1: Choose a partial symbolic derivation CD = (VD , SD , KD , InD ,OutD) such that:

– |VD | ≤ |Sub(C)|+ |In|+ |Out|+ |KD |
– |InD | = |Out| and |OutD | = |In|
– A composition C ◦ CD(KD) is defined

– SD is homogeneous, contains equations x
?
= t with t ∈ Sub(C)∪ VD and x ∈ X,

a set of new variables with |X| ≤ |Sub(C) ∪ VD |, and defines an equivalence
relation on Sub(C) ∪ VD

2: Choose a linear ordering ≺X on variables in X ∪ Const(C) ∪ Var(C) extending ≺.
Let X1 and X2 be two disjoint subsets of X

3: Form the closed partial symbolic derivation C ′ = C ◦CD , and purify it into two pure
symbolic derivations C1 and C2, where variables of X1 (resp. X2) are considered as
constants in C2 (resp. C1).

4: If SolveD1(C1,≺X) and SolveD2(C2,≺X) return Sat else fail

The proof of completeness of Alg. 2 is intricate, and relies on a locality result
for deductions and on a pumping lemma for solutions. Its correctness relies on
the ordering ≺X to construct a solution σ from two partial solutions σ1 and σ2.

7 Conclusion

Web service XML messages are often vulnerable to rewriting attacks since the
associated message format and processing model are quite tolerant to inclusion
of new elements. We have developed a verification procedure that accounts for
this and moreover can be extended with most existing protocol analysis proce-
dures for algebraic operators. The combination algorithm applies in particular to
encryption/decryption operators [19], list with associative concatenation [17],
XOR [20], abelian groups [16]. Our framework allows us to describe specific
implementation of XML/XPath library and we aim at extending this work to
take the various security standards for Web services into account. We also plan
to implement it in the AVISPA platform [21].

References

1. Bhargavan, K., Fournet, C., Gordon, A.D., Pucella, R.: Tulafale: A security tool
for web services. In: Formal Methods for Components and Objects. Volume 3188
of Lecture Notes in Computer Science., Springer (2003) 197–222

2. Cervesato, I., Durgin, N.A., Lincoln, P., Mitchell, J.C., Scedrov, A.: A meta-
notation for protocol analysis. In: CSFW. (1999) 55–69

3. Chevalier, Y., Rusinowitch, M.: Combining intruder theories. In: Proc. of ICALP.
Volume 3580 of Lecture Notes in Computer Science., Springer (2005) 639–651

4. Basin, D.A., Mödersheim, S., Viganò, L.: Algebraic intruder deductions. In Sut-
cliffe, G., Voronkov, A., eds.: LPAR. Volume 3835 of Lecture Notes in Computer
Science., Springer (2005) 549–564

5. Comon-Lundh, H., Delaune, S.: The finite variant property: How to get rid of
some algebraic properties. In: Proceedings of RTA’05). Lecture Notes in Computer
Science, Nara, Japan, Springer (2005)

6. Goubault-Larrecq, J., Roger, M., Verma, K.N.: Abstraction and resolution mod-
ulo ac: How to verify diffie-hellman-like protocols automatically. J. Log. Algebr.
Program. 64(2) (2005) 219–251

7. Schmidt-Schauß, M.: Unification in a combination of arbitrary disjoint equational
theories. J. Symb. Comput. 8(1/2) (1989) 51–99

8. Baader, F., Schulz, K.U.: Unification in the union of disjoint equational theories.
combining decision procedures. J. Symb. Comput. 21(2) (1996) 211–243

9. Thayer, F.J., Herzog, J.C., Guttman, J.D.: Strand spaces: Proving security proto-
cols correct. Journal of Computer Security 7(1) (1999)

10. Chevalier, Y., Lugiez, D., Rusinowitch, M.: Towards an Automatic Analysis of
Web Service Security. Technical report, INRIA (2007) http://www.inria.fr/

rrrt/liste-2007.html.
11. Dolev, D., Yao, A.: On the Security of Public-Key Protocols. IEEE Transactions

on Information Theory 2(29) (1983)
12. Weidenbach, C.: Towards an automatic analysis of security protocols in first-order

logic. In: 16th International Conference on Automated Deduction. Volume 1632 of
Lecture Notes in Computer Science., Springer (1999) 314–328

13. Dershowitz, N., Jouannaud, J.P.: Rewrite systems. In: Handbook of Theoretical
Computer Science, Volume B. Elsevier (1990) 243–320

14. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University
Press (1998)

15. Bonacina, M.P., Hsiang, J.: Towards a foundation of completion procedures as
semidecision procedures. Theor. Comput. Sci. 146(1&2) (1995) 199–242

16. Millen, J., Shmatikov, V.: Symbolic protocol analysis with an abelian group oper-
ator or Diffie-Hellman exponentiation. Journal of Computer Security (2005)

17. Chevalier, Y., Kourjieh, M.: A symbolic intruder model for hash-collision attacks.
In: 11th Annual Asian Computing Science Conference. Lecture Notes in Computer
Science, Springer (2006) ftp://ftp.irit.fr/IRIT/LILAC/main.pdf.

18. Bursuc, S., Comon-Lundh, H., Delaune, S.: Associative-commutative deducibility
constraints. In Thomas, W., Weil, P., eds.: Proceedings of the 24th Annual Sym-
posium on Theoretical Aspects of Computer Science (STACS’07). Volume 4393 of
Lecture Notes in Computer Science., Aachen, Germany, Springer (2007) 634–645

19. Rusinowitch, M., Turuani, M.: Protocol insecurity with finite number of sessions
is NP-complete. In: Proc.14th IEEE Computer Security Foundations Workshop,
Cape Breton, Nova Scotia (2001)

20. Chevalier, Y., Kuesters, R., Rusinowitch, M., Turuani, M.: An NP Decision Proce-
dure for Protocol Insecurity with XOR. In: Proceedings of the Logic In Computer
Science Conference, LICS’03. (2003)

21. Armando, A., et al.: The AVISPA tool for the automated validation of internet
security protocols and applications. In Etessami, K., Rajamani, S.K., eds.: CAV.
Volume 3576 of Lecture Notes in Computer Science., Springer (2005) 281–285

