
Space Efficient Computation of Scalar Multiplication with
Applications to Hand-held Devices

Anonymous Submission

No Institute Given

Abstract. We present a new approach for efficient computation of scalar multiplication using less
storage space. We know that ecc is more suitable for hand-held devices like cell phones, smart-cards,
pdas, etc., because of their shorter key sizes with significant level of security compared with other
conventional cryptosystems. One of the major constraints of hand-held devices is memory. It is worth-
while to have some techniques to compute on less storage space so that we can apply such techniques
on any hand-held devices where memory is a constraint. Our approach incorporates the technique
called the fixed base comb method into the Koblitz’s idea of using Frobenius Map for computing scalar
multiplication. With our approach the storage space needed during the preprocessing stage of scalar
multiplication is tremendously improved from s× 3h +3r to n× 2w, where n = s×h+ r and w is word
size.

Keywords: ecc, Scalar multiplication, Hand-held devices, Frobenius map.

1 Introduction

Arithmetic in finite fields is an integral part of many public-key algorithms, including those based
on the discrete logarithm problem in finite fields, elliptic curve based schemes, and emerging ap-
plications of hyperelliptic curves [6]. The ability to quickly perform arithmetic in the underlying
finite field determines the performance of these schemes. Finite fields are identified with the nota-
tion GF (pm), where p is a prime and m is a positive integer. In elliptic [6, 7, 9] and hyperelliptic
curve cryptosystems, main operations such as key agreement and signing/verifying involves scalar
multiplication using a large integer k. The speed of scalar multiplication plays an important role in
the efficiency of the whole system. In particular, fast multiplication is more crucial in some envi-
ronments such as central servers, where large numbers of key agreements or signature generations
occur, and in hand-held devices with low computational power.

There are several points that influence the speed of multiplication: the choice of base field, the
choice of curve, the representation of a point, the representation of a scalar, and the multiplica-
tion algorithm. There are several multiplication methods used on general elliptic and hyperelliptic
curves. The efficiency of an elliptic and hyperelliptic curve cryptosystems is crucially dependent on
the speed of scalar multiplication. This has led to a tremendous research in algorithms for efficient
scalar multiplication. These algorithms fall into two classes.

– General algorithms which work for any cyclic group.
– Algorithms which exploit the algebraic properties of elliptic and hyperelliptic curves.

One of the most important techniques of the second kind is the use of endomorphisms to speed up
scalar multiplication. This was first proposed by Koblitz [11] and has also been studied by many
researchers in [4,5,8,10,12,18,19]. The most natural endomorphism is the Frobenius automorphism

and was initially proposed by Koblitz [11]. A series of research papers have resulted in the applica-
bility of the Frobenius map technique to elliptic and hyperelliptic curves over any finite field [12].
In our work, we apply the fixed base comb technique to the Koblitz’s idea of using Frobenius map
for computing scalar multiplication, which results in tremendous improvement in the storage space
needed to store the points during the preprocessing stage of scalar multiplication operation. So
that, our scheme is very applicable to any hand-held devices where memory is a constraint.

Let Fq be the underlying field. The Frobenius map technique applies when q is a prime power
(rather than a prime). The case p = 2 has been explored extensively by the research community.
Our algorithm applies to the case p > 2, for example Optimal Extension Fields [1, 2]. Optimal
Extension Fields (oefs) are finite fields of the form GF (pm), p > 2, where p and m are chosen
to match the underlying hardware. oefs, optimally utilizing the underlying hardware offer con-
siderable advantage in software implementations of Elliptic curve cryptosystems. oefs are special
cases of prime power fields. In this paper, we mainly focus on space efficient computation of scalar
multiplication as an application to hand-held devices like cell phones, smart-cards, pdas, etc. We
know that one of the main constraints of hand-held devices is a limited memory. Our motivation is
to come with techniques which can be used to compute scalar multiplication even on less storage
space.

This paper is organized in the following manner. In Section 2, we present the basic material required.
In Section 3, we give the detailed description of the Fixed base comb method which we incorporate
appropriately into the idea of Frobenius automorphism. In Section 4, we present our approach of
efficient computation of the scalar multiplication whereas in Section 5 we compare our approach
with some of the already existing algorithms. Finally we give some conclusions and further directions
of the work in Section 6.

2 Preliminaries

Here in this section we give some background material needed to understand the rest of the work.
In our work, we use the term point repeatedly, which we will mean either a point on an elliptic
curve or a reduced divisor of an hyperelliptic curve. The main operation for realizing elliptic and
hyperelliptic curve cryptosystems is computing kP , where k is an integer and P is a point. This
operation is called the scalar multiplication. Our focus, in this work, is to obtain space efficient
algorithms for scalar multiplication for curves over GF (pn) using Frobenius map.

2.1 Prime power fields

Binary fields GF (2n) and prime fields GF (p) were considered as most attractive for software imple-
mentation of cryptographic applications. A special class of finite fields known as Optimal Extension
Fields(oefs) were proposed [14], where p and n were chosen appropriately to exploit the underlying
hardware optimally for performance gain. An OEF is a finite field of the form GF (pn), where

– p is a Pseudo-mersenne prime
– an irreducible binomial P (x) = xn − ω exits over GF (p).

The prime p is generally chosen to be very close to the word size of the processor, so that each
machine word can accommodate one element of the subfield GF (p) and each element of the OEF
GF (pn), can be accommodated in n words, with minimum wastage of memory. Also, oefs allow
efficient modular reduction for arithmetic in the extension field. The algorithms proposed in this
work are suitable for the prime power fields of type GF (pn), which contains the oefs as a subclass
of it.

2.2 Normal basis

A field Fqn is said to have a normal basis if it has a basis (over Fq) of the form {α, αq, · · · , αqn−1}.
Any element of the field can be represented as x =

∑n−1
j=0 ajα

qj
or briefly as an ordered n-tuple

x = (a0, a1, · · · , an−1). In the field Fqn , we have

xq = (
∑n−1

j=0 ajα
qj

)q =
∑n−1

j=0 ajα
qj+1

.

Thus if x is represented by the tuple (a0, a1, · · · , an−1) then xq is represented by (an−1, a0, · · · ,
an−2), as αqn

= 1. With a normal basis representation of elements, xq can be computed from x by
a circular shift operation only. For further details on normal basis, interested reader can refer [13].

2.3 Frobenius map

The Frobenius map [3,20] φ : Fqn → Fqn is an automorphism of Fqn and is defined as

φ(x) = xq.

The map is extended to points of an elliptic or hyperelliptic curve over Fqn in the following manner:
A point of an elliptic curve is represented using a pair of elements of Fqn ; similarly a reduced
divisor of a hyperelliptic curve is represented using a tuple of elements of Fqn . An application of
the Frobenius map to a point is to actually apply the map individually to the field elements which
represent the point. We note that φn is the identity map of Fqn . If the field Fqn is represented using
a normal basis, then the computation of φ(x) is “for free”. Further, as observed in [18, 19], in the
case q = 2, the Frobenius map is φ(x) = x2 and hence can be computed using a field squaring
which is a relatively cheap operation even if polynomial basis representation of elements is used.

2.4 Scalar Multiplication using Frobenius map

Koblitz in [11], very first time suggested the use of Frobenius map to speed up scalar multiplication
algorithm. Later on, this idea has been developed by different authors [5, 8, 10, 15, 17, 19]. Let q be
a prime power, Fq be the finite field of order q and Fqn an extension field of Fq. Let C be the curve
of genus g to be used for the cryptosystem and we consider the Fqn-rational points of C. Let φ be
the Frobenius map from Fqn to Fqn . Let k be an integer, and P be a point on an elliptic curve or a
reduced divisor of a hyperelliptic curve and we wish to compute kP . For hyperelliptic curves, it has
been shown that the Frobenius map based method can be used over any field of finite characteristic.

The base φ-expansion of k is
∑n−1

i=0 uiφ
i, where under reasonable assumptions each ui is an integer

in the range [−qg, qg]. It is possible to obtain the base-φ expansion of k [14].

Next we will define some additional parameters which will be required for the rest of the work in
the paper.

– A = maxb(|ui|)c.
– For i ∈ {0, 1, · · · , n− 1} write |ui| =

∑A
j=0 u′i,j2

j , where u′i,j ∈ {0, 1}.
– ui,j = sgn(ui)u′i,j , where sgn(ui) is the sign of ui.
– For 0 ≤ i ≤ n− 1, define X0 = X and Xi = φi(X0) = φi(X).

The expression kP can be written as

kP = u0P0 + u1P1 + · · ·+ un−1Pn−1

= (u0,020 + u0,121 + · · ·+ u0,A2A)P0

+(u1,020 + u1,121 + · · ·+ u1,A2A)P1

· · · · · · · · · · · · · · ·

+(un−1,020 + un−1,121 + · · ·+ un−1,A2A)Pn−1

We consider this expression as a matrix of order n× (A + 1)

Now we will have a look into the several cases depending on the nature of the underlying field Fp,
where p = qn.

1. When n = 1 and p is prime : In this case, the above expression reduces to a single row. In
this situation, the Frobenius map based technique does not really apply. Hence we will not
consider this kind of fields in our work.

2. When n > 1 : In this case, the above expression will have more than one row and the Frobenius
map technique can be applied. It will be convenient to divide this into two sub-cases.

– If q = 2, the field is F2n and the curves are the Binary Koblitz curves. In this case each
ui ∈ {0,±1} and hence the above expression is actually a single column. This is the other
extreme to case 1 above. In [18,19], the above expression is called the φ-adic expansion of m.

– If q > 2, then the above expression has a more square shape and again our algorithm offers
improvements over existing algorithms.

Algorithm I: The Basic Approach

INPUT: Given an integer k =
∑n−1

i=0 uiφ
i and a point P

OUTPUT: Compute kP

1. for 0 ≤ i ≤ n− 1 and 0 ≤ j ≤ A, compute Xi and ui,j

2. set Y =
∑n−1

i=0 ui,AXi

3. for j = A− 1 downto 0
4. Y = 2Y ; Y = Y +

∑n−1
i=0 ui,jXi

5. return Y

By using the above Algorithm I, we can compute the scalar multiplication kP by using n(A + 1)
and A additions and doublings respectively. The expected running time of Algorithm I is (((2w −
1)/2w)d− 1)A + (d− 1)D.

3 Fixed-base Comb Method

In the fixed-based comb method [9], the binary representation of k is first padded on the left with
dw −A 0s, and is then divided into w bit strings each of the same length d = dA/we so that

ui = Uw−1‖ · · · ‖U1‖U0, for 0 ≤ i ≤ n− 1

The bit strings U j are written as rows of an exponent array




U0

...
Uw′

...
Uw−1




=




U0
d−1

...
Uw′

d−1
...

Uw−1
d−1

· · ·
· · ·
· · ·
· · ·
· · ·

U0
0
...

Uw′
0

...
Uw−1

0




=




Ud−1
...

U(w′+1)d−1
...

Uwd−1

· · ·
· · ·
· · ·
· · ·
· · ·

U0
...

Uw′d
...

U(w−1)d




where Ul is the lth bit of ui and whose columns are then processed one at a time. In order to
accelerate the computation, the points

[aw−1, · · · , a2, a1, a0]P = aw−12(w−1)dP + · · ·+ a222dP + a12dP + a0P

are precomputed for all possible bit strings (aw−1, · · · , a1, a0).

Algorithm II: Fixed-base comb method for point multiplication

INPUT: Given an integer k, word size w, d = dA/we, ui = (ui,A, · · · , ui,1, ui,0)2, P ∈ E(Fq)
OUTPUT: Compute kP

1. precomputation: compute [aw−1, · · · , a1, a0] for all bit strings (aw−1, · · · , a1, a0) of length w
2. Add 0s on the left of k if necessary, write k = Uw−1‖ · · · ‖U1‖U0, where each U j is a bit string

of length d. Let U j
i denote the ith bit of U j

3. Q ←∞
4. for i from d− 1 downto 0 do

(a) Q ← 2Q
(b) Q ← Q + [Uw−1

i , · · · , U1
i , U0

i]P
5. return Q

We know that the expected running time of Algorithm I is

(((2w − 1)/2w)d− 1)A + (d− 1)D

If we treat (2w−1)/2w ≈ 1, then we can compute the scalar multiplication kP with d−1 additions
and d − 1 doublings by using the Algorithm II. But, this approach will require precomputation
and hence will occupy 2w storage space, where w is the word size. Whereas in the Algorithm I, no
precomputations are needed.

4 Our New Approach

Here in this section, we explain our new approach for computing scalar multiplication by applying
the concept of fixed base comb to Koblitz’s idea of using Frobenius map. Given an integer k and a
point P , we have to compute kP .

We will define

kP = u0P0 + u1P1 + · · ·+ un−1Pn−1

where P0 = P and Pi = φi(P), which require n Frobenius map computations. Each ui is an
integer in the interval [−qg, qg]. It is possible to obtain the base-φ expansion of k. We will compute
each uiPi, for 0 ≤ i ≤ n − 1, separately. Finally with n − 1 additions we can obtain the scalar
multiplication kP .

Now we will give the algorithm to compute uiPi ∀i.
Algorithm III: Sub-Algorithm

INPUT: Given ui and Pi {here subscript i is used for notational consistency}
OUTPUT: Compute uiPi

1. precomputation: compute [aw−1, · · · , a1, a0]Pi, for all bit strings (aw−1, · · · , a1, a0) of length
w

2. by padding ui on the left with 0s if necessary, write ui = Uw−1‖ · · · ‖U1‖U0, where each U j is a
bit string of length d. Let U j

l denote the lth bit of U j

3. Q ←∞
4. for l from d− 1 downto 0 do

(a) Q ← 2Q
(b) Q ← Q + [Uw−1

l , · · · , U1
l , U0

l]Pi

5. return Q

Here d = dA/we, where A is the maximum number of bits used to represent any ui, 0 ≤ i ≤ n− 1.
In Algorithm III, the precomputation step will require 2w points to be stored. This algorithm will
take (((2w − 1)/2w)d − 1) additions and d − 1 doubles. Here in Algorithm III, we are computing
only one component of the kP representation. This is to be repeated n times and finally with n− 1
additions we will get the required scalar multiplication kP .

Here we will give the generalized algorithm for computing scalar multiplication.

Algorithm IV: Scalar Multiplication Algorithm

INPUT: Given k and P
OUTPUT: Compute kP

1. precompute Pi for 0 ≤ i ≤ n− 1 using Frobenius map.
2. for i from 0 to n− 1 do

(a) compute uiPi using Algorithm III

(b) sum = sum + Qi

3. Q ← sum
4. return Q

We will consider (2w − 1)/2w ≈ 1. Then the algorithm IV requires nd additions and n(d − 1)
doublings. Total storage space required is n× 2w.

5 Comparisons with Existing Approaches

Recently in [14, 16], the authors have given a new table look-up method for computing the scalar
multiplication using Frobenius map. They have computed the scalar multiplication using A ad-
ditions and A doublings, but during the precomputation stage their approach requires the huge
storage space to store 3n points, which is not ideal to implement such schemes in hand-held devices
where memory is a constraint. Even for moderate values of n, huge amount of storage space is
needed to store 3n points. To minimize this problem, the authors in [14, 16] have introduced the
smaller table look-up methods. By this approach, the number of points to be stored has been re-
duced from 3n points to s× 3h + 3r, where n = s× h + r, which requires significantly less storage
space compared with the storage space needed to store 3n points. But the number of additions
increased from A to (s + 1)A, whereas the number of doublings remain the same.

We argue that even with the smaller table look-ups, the amount of storage space needed to store the
points during the preprocessing stage is significantly high. To alleviate this problem to maximum
extent possible, we have come up with a new approach, by which it is sufficient to store only n×2w

points. From this it is clear that our approach minimizes the storage space significantly during the
preprocessing stage of scalar multiplication over elliptic curve, and so is applicable to any hand-
held devices where memory is a constraint. In our approach, we use the fixed-base comb method
to compute each uiPi for 0 ≤ i ≤ n− 1. Where

kP = u0P0 + u1P1 + · · ·+ un−1Pn−1.

By doing so, we can compute the scalar multiplication using nd additions and n(d− 1) doublings.
Whereas during the precomputation stage we need storage space to store n×2w points only, where
w is the word size. In our approach, the amount of storage space needed during the preprocessing
stage is significantly improved over the amount of storage needed during the preprocessing stage
in the existing approaches [16].

Here we analyze and highlight the results of our approach to compute scalar multiplication with
those of the existing schemes by means of graphs. In both the following graphs, x-axis represents
word sizes and y-axis represents the number of points. Figures 1(a) and 2(a) are the results of our
scheme whereas Figures 1(b) and 2(b) are the results of the existing approach.

5 10 15 20 25 30

1·1010

2·1010

3·1010

4·1010

Figure : 1 HaL

5 10 15 20 25 30

2.5·1014
5·1014

7.5·1014
1·1015

1.25·1015
1.5·1015

Figure : 1 HbL

Fig. 1. For the case w = h, where w is word size, the amount of storage space needed to store
n×2w points is much lesser than the amount of storage space needed to store s×3h +3r points. In
this case the number of additions remains the same whereas the number of doublings increased by
n/w times, and we claim that this order of increase in the number of doublings is not so significant.

For the case w > h, our approach will take slightly more storage space, and we will get moderate
improvement over the number of additions and doublings required. Its quite unlikely to occur this
case as the word size w is much lesser than the size of h for the scalar k.

6 Conclusions

The efficient implementation of most of the elliptic and hyperelliptic curve cryptographic schemes
is based on the efficient computation of kP for a given k, and a point P . We have improved the
storage space required during the preprocessing stage of scalar multiplication operation significantly
by applying the concept of fixed base comb to the Koblitz’s idea of using Frobenius map for

5 10 15 20 25 30

1·1010

2·1010

3·1010

4·1010

Ffigure : 2 HaL

5 10 15 20 25 30

2·1027

4·1027

6·1027

8·1027

Figure : 2 HbL

Fig. 2. For the case w < h, where w is word size, the amount of storage space needed to store
n × 2w points is much smaller than the amount of storage space needed to store s × 3h + 3r. In
this case the number of additions slightly increased whereas the order of increase in the number of
doubles remains the same to that of case 1.

computing scalar multiplication. By this approach, we obtain the improvement in storage space
from s × 3h + 3r to n × 2w, where n = s × h + r. Because of such a tremendous improvement in
storage space, we can easily incorporate our scheme in any hand-held devices where memory is a
constraint.

Bibliography

[1] Harald Baier, Elliptic curves of prime order over optimal extension fields for use in cryptography, Progress in
cryptology - indocrypt 2001, 2001, pp. 99–107.

[2] Daniel V Bailey and Christof Paar, Optimal extension fields for fast arithmetic in public key algorithms, Pro-
ceedings of advances in cryptology - crypto ’98, 1998, pp. 472–485.

[3] Ian Blake, Gadiel Seroussi, and Nigel Smart, Elliptic curves in cryptography, Cambridge University Press, 2004.
[4] Y.J. Choie and J.W. Lee, Speeding up the scalar multiplication in the jacobian of hyperelliptic curves using

frobenius map, Proceedings of progress in cryptology - indocrypt ’02, 2002, pp. 285–295.
[5] Mathieu Ciet, Tanja Lange, Francesco Sica, and Jean-Jacques Quisquater, Improved algorithms for efficient

arithmetic on elliptic curves using fast endomorphisms, Proceedings of advances in cryptology - eurocrypt ’03,
August 2003May 4, pp. 388–400.

[6] Henri Cohen and Gerhard Frey, Handbook of elliptic and hyperelliptic curve cryptography, Chapman and
Hall/CRC, 2005.

[7] Andreas Enge, Elliptic curves and their applications to cryptography- an introduction, Kluwer Academic Pub-
lishers, 2001.

[8] R.P. Gallant, R.J. Lambert, and S.A. Vanstone, Faster point multiplication on elliptic curves using efficient
endomorphisms, Proceedings of advances in cryptology - crypto ’01, 2001, pp. 190–200.

[9] Darrel Hankerson, Alfred Menezes, and Scott Vanstone, Guide to elliptic curve cryptography, Springer, 2004.
[10] T. Kobayashi, H. Morita, K. Kobayashi, and F. Hoshino, Fast elliptic curve algorithm combining frobenius map

and table reference to adapt to higher characteristic, Proceedings of advances in cryptology - eurocrypt ’99, 1999,
pp. 176–189.

[11] N. Koblitz, CM curves with good cryptographic properties, Proceedings of advances in cryptology - crypto ’91,
1991, pp. 279–288.

[12] T. Lange, Efficient arithmetic on hyperelliptic curves, Ph.D. Thesis, 2001.
[13] R. Lidl and H. Niederreiter, Introduction to finite fields and their applications., Cambridge University Press,

1994.
[14] Pradeep Kumar Mishra, Studies on efficient and secure implementation of elliptic and hyperelliptic curve cryp-

tosystems, Ph.D. Thesis, 2004.
[15] V. Muller, Fast multiplication on elliptic curves over small fields of characteristic two., Journal of Cryptology

11 (1998), no. 4, 219–234.
[16] Palash Sarkar, Pradeep Kumar Mishra, and Rana Barua, New table look-up methods for faster frobenius map

based scalar multiplication over GF (pn), Proceedings of acns, 2004, pp. 479–493.
[17] N.P. Smart, Elliptic curve cryptosystems over small fields of odd characteristic., Journal of Cryptology 12 (1999),

no. 2, 141–151.
[18] Jerome A. Solinas, An improved algorithm on a family of elliptic curves., Proceedings of advances in cryptology

- crypto ’97, 1997, pp. 357–371.
[19] , Efficient arithmetic on koblitz curves, Designs Codes Cryptography 19 (2000), no. 2/3, 195–249.
[20] Lawrence C. Washington, Elliptic curves - number theory and cryptography, Chapman & HALL/CRC, 2003.

