
Towards mechanized correctness proofs for
cryptographic algorithms

Axiomatization of a probabilistic Hoare style logic.

Jerry den Hartog

Department of Computer Science, University of Twente, The Netherlands
jerry.denhartog@cs.utwente.nl

Abstract. In [5] we build a formal verification technique for game based
correctness proofs of cryptographic algorithms based on a probabilistic
Hoare style logic [9]. An important step towards enabling mechanized
verification within this technique is an axiomatization of implication be-
tween predicates which is purely semantically defined in [9]. In this paper
we provide an axiomatization and illustrate its place in the formal veri-
fication technique of [5].

1 Introduction

A typical proof to show that a cryptographic construction is secure uses a reduc-
tion from the desired security notion towards some underlying hardness assump-
tion. The security notion is usually represented as a game, in which one proves
that the attacker’s chance of winning the game is negligible. From a program-
ming language perspective, these games can be thought of as programs whose
behaviour is partially known, since the program typically contains invocations to
an unknown function, i.e. a function for which the body is not fixed, representing
an arbitrary attacker. In this context, the cryptographic reduction is a sequence
of valid program transformations.

Even though cryptographic proofs based on game reductions are powerful,
the price one has to pay is high: these proofs are complex, and can easily become
involved and intricate. This makes the verification difficult, with subtle errors
difficult to spot. Some errors may remain uncovered long after publication, as
illustrated for example by Boneh and Franklin’s IBE encryption scheme [3],
whose cryptographic proof has been recently patched by Galindo [7].

Recently, several papers from the cryptographic community (e.g. the work of
Bellare and Rogaway [1], Halevi [8], and Shoup [13]) have recognized the need
to tame the complexity of cryptographic proofs. There, the need for (develop-
ment of) rigorous tools to organize cryptographic proofs in a systematic way
is advocated. Besides preventing subtle easily overlooked mistakes from being
introduced in the proof, this precise proof development framework would also
standardize the proof writing language so that proofs can be checked easily,
even perhaps using computer aided verification. The proposed frameworks [1, 8,
13] provide ad-hoc formalisms to reason about the sequences of games, providing

2 Jerry den Hartog

useful program transformation rules and illustrating the techniques with several
cryptographic proofs from the literature.

In [5] we introduce a framework for game-based cryptographic proofs based
on Hoare logic [10] by adapting and extending earlier work on Probabilistic
Hoare-logic [9]. The use of the framework is illustrated with a formalized proof
of security of ElGamal [6], which reduces the semantic security of the cryptosys-
tem to the hardness of solving the (well-known) Decisional Diffie-Hellman prob-
lem [2]. An approach [11] similar to ours introduces two systems which, trans-
lated to our approach, reason about probabilistic predicates (though restricted
to counting) and about indistinguishability of Hoare tripples respectively. Main
differences are that on the Hoare tripples level we only cover equivalence not yet
indistinguishability while, on the other hand, our approach covers the step from
program to mathematical function and combines the two systems using the well
established approach of Hoare logic. For both approaches mechanization is still
an open issue.

Here we address an important step towards the mechanization of proofs in the
framework of [5]: axiomatization of the implication relation between predicates.
The Hoare rules allow reasoning about programs, however, this needs to be
combined with a system for reasoning about the probabilistic predicates used
to express pre and post conditions. The main result of this paper is to provide
this reasoning system in the form of a calculus for implication and equivalence
of predicates. The core of the calculus, besides a conservative extension result
allowing classical logical reasoning, is formed by a list of axioms and a congruence
result enabling equational reasoning. Hence we also refer to the calculus as an
axiomatization of the probabilistic predicate logic.

2 The Basics

We shortly recall the predicates used by the probabilistic Hoare style logic pL [9].
We introduce probabilistic states Θ and the validity relation |= for predicates
which gives asserts that a predicate holds in a given probabilistic state.

Expressions We define integer expressions e and Boolean expressions (or ‘con-
ditions’) c by:

e ::= n | x | e + e | e − e | e · e | e div e | e mod e | f(e, . . . , e)
c ::= true | false | b | e = e | e < e | c ∧ c | c ∨ c | ¬c | c → c

with x is a variable of type integer, b a variable of type Boolean, n an integer
and f a function symbol. We assume it is clear how this can be extended with
additional operators and to other types and mostly leave the type of variables
implicit, assuming that all variables and values are of the correct type.

Programs Probabilistic programs statements s are defined by:

s ::= skip | x := e | s ; s | if c then s else s fi | D(e, . . . , e; x, . . . , x) | s⊕ρ s

Towards mechanized correctness proofs for cryptographic algorithms 3

where x is a program variable, e an expression of the right type, ; denotes sequen-
tial composition, if conditional choice, D a procedure call and ⊕ρ probabilistic
choice. The procedure call D(e, e′; x, y) causes the body BD of D to be executed
with e, e′ as read only and x, y as read-write arguments. The read-write argu-
ments must be distinct variables (i.e. no aliasing). In s⊕ρs′ program s is executed
with probability ρ and s′ is executed with probability 1−ρ. Formally a program
is a pair (s, B) consisting of a program statement and the declaration giving the
procedure bodies. We will assume that the intended declaration is clear from the
context and not destinguish between programs and statements.

States A deterministic state, σ ∈ S, is a function that assigns a value to each
program variable. A probabilistic state, θ ∈ Θ gives the probability of being in
a given deterministic state. We can think of a probabilistic state as (countable)
set of labelled deterministic states or as a sum ρ1 · σ1 + ρ2 · σ2 + Here, the
probability of being in the (deterministic) state σi is ρi, i ≥ 0. The sum of
all σi is atmost 1, with a sum less than 1 indicating a state with ‘incomplete
information’ (e.g. caused by non-termination). For simplicity and without loss
of generality we assume that each state σ occurs at most once in θ; multiple
occurrences of a single state can be merged into one single occurrence by adding
the probabilities, e.g. 1 · σ rather than 3

4 · σ + 1
4 · σ.

Operations on states The value V(e)(σ) of an expression e in a state σ is defined
as usual. A variant σ[x/e] of a deterministic state σ is a state which only differs
from σ for the variable x where it returns V(e)(σ) the value of expression e
(in state σ). A variant θ[x/e] of a probabilistic state θ is obtained by taking the
variant element wise, i.e. if θ = ρ1 ·σ1+ρ2 ·σ2+ . . . then θ[x/e] = ρ1 ·σ1[x/e]+ρ2 ·
σ2[x/e] + The (partial) operations + (addition), ρ· (scaling) on probabilistic
states (which are functions to [0, 1]) are the addition and scaling of functions. The
operation ⊕ρ (probabilistic choice) combines these two: θ⊕ρθ′ = ρ·θ+(1−ρ)·θ′.
Finally the operation c? (conditional choice) removes the probability for states
which do not satisfy c: if θ = ρ1 · σ1 + ρ2 · σ2 + . . . and c is true in σ1, σ3 but
not in σ2, etc. then c?θ = ρ1 · σ1 + ρ3 · σ3 + . . .

Deterministic and probabilistic predicates Deterministic predicates dp ∈ DPred
are first order predicate logical formulas, i.e.

dp ::=true |false |b | e ≤ e | dp ∧ dp | dp ∨ dp | ¬ dp | dp → dp | ∃i :dp | ∀i :dp

Note that the conditions (boolean expression) are also deterministic predicates.
With interpretation, e.g. I, to give the value of the (program and logical, non-
program) variables we can check if a predicate is satisfied, denoted I |=d dp.
If we have a distribution instead of the value of program variables, e.g. in a
probabilistic state, we get a probability that the predicate holds. We use P(dp)
to denote this probability and around it build a new type of expressions, the
probabilistic expressions (er), with range [0, 1]:

er ::= ρ | r | P(dp) | er + er | er − er | er ∗ er | er/er

4 Jerry den Hartog

where ρ is a number in [0, 1] and r a variable over this domain. A probabilistic
state provides the distribution of the program variables with which we evaluate
P(dp). For logical variables such as r we still have a standard interpretation
which simply provides the value (i.e. a number in [0, 1]).

Example 1. The expression r + P(x > 2) has value 3
4 for interpretation I with

I(r) = 1
4 and state 1

4 · [x = 1] + 1
4 · [x = 2] + 1

4 · [x = 3] + 1
4 · [x = 4].

1
2 · x is not a valid expression as program variables are allowed only within

in the P(·) construct.

Probabilistic predicates p, q ∈ Pred are basically first order predicate formulas
and the combination of such predicates using (logical and arithmetical) opera-
tors:

p ::= true | false | b | e ≤ e | p ∧ p | p ∨ p | ¬p | p → p | ∃j : p | ∀j : p

| ρ · p | p + p | p⊕ρ p | c?p

Note that the type of the expression e can be any of the types introduced,
including the probabilistic expressions.

Example 2. A common basic predicate P(x = 1) = r states that probability of
a deterministic predicate, in this case x = 1 holding is equal to r.

The predicate ∀i, j : P(x = i ∧ y = j) = P(x = i) · P(y = j) states that x and
y are independent.

Given a probabilistic state and an interpretation of the logical variables we can
check if the state satisfies a predicate, (θ, I) |= p, or simply θ |= p, again omit-
ting the interpretation I from the notation. The interpretation of comparison of
expressions and the logic operators are standard. The arithmetical operators are
the logical counterparts of the same operations on states. We have:

θ |= ρ · p when there exists θ′: θ = ρ · θ′, θ |= p

θ |= p + p′ when there exists θ1, θ2: θ = θ1 + θ2, θ1 |= p and θ2 |= p′

θ |= p⊕ρ p′ when there exists θ1, θ2: θ = θ1 ⊕ρ θ2, θ1 |= p and θ2 |= p′

θ |= c?p when there exists θ′: θ = c?θ′, θ |= p

Note that if a predicate does not use the P(·) function nor the arithmetical
operators, we do not need the probabilistic state to check if the predicate is
satisfied (only the interpretation of the logical variables is needed). We call such
predicates P-free.

Example 3. The predicate (P(x = 1) = 1
4) + (P(x > 2) = r) is true in state

1
4 · [x = 1] + 1

4 · [x = 2] + 1
4 · [x = 3] + 1

4 · [x = 4] with interpretation I, I(r) = 3
4 ,

because we can split the state into 1
4 · [x = 1], which satisfies P(x = 1) = 1

4 , and
1
4 · [x = 2] + 1

4 · [x = 3] + 1
4 · [x = 4] which satisfies P(x > 2) = r.

Predicate (P(x = 1) = 1
4) + (P(x < 3) = r) is false in this state and I; there

is no way of splitting the state in such a way that parts satisfy both predicates.

Towards mechanized correctness proofs for cryptographic algorithms 5

3 A probabilistic Hoare style logic.

In this section we briefly introduce the probabilistic Hoare style logic. See [9,
5] for details. Hoare triples, also known as program correctness triples, give a
precondition and a postcondition for a program. A triple is called valid, denoted
|= { p } s { q } , if the precondition guarantees the postcondition after execution
of the program.

Our derivation system for Hoare triples adapts and extends the existing Hoare
logic calculus. The rules for skip, assignment, sequential composition, precondi-
tion strengthening and postcondition weakening and procedure calls are stan-
dard. The rule for conditional choice is adjusted and a new rule for probabilistic
choice is added, along with some structural rules. We only present the main
rules here (see e.g. [9] for a complete overview), noting that the other rules come
directly from Hoare logic or from natural deduction.

{ p[x/e] } x := e { p }
(Assign)

{ c?p } s { q } {¬c?p } s′ { q′ }

{ p } if c then s else s′ fi { q + q′ }
(If)

{ p } s { p′ } { p′ } s′ { q }

{ p } s ; s′ { q }
(Seq)

{ p } s { q } { p } s′ { q′ }

{ p } s⊕ρ s′ { q ⊕ρ q′ }
(Prob)

{ p } s { q } { p } s { q′ }

{ p } s { q ∧ q′ }
(And)

p′ ⇒ p { p } s { q } q ⇒ q′

{ p′ } s { q′ }
(Cons)

{p} BD {q}
{p[e1,...,en,x1,...,xn / v1,...,vn,w1,...,wm]} D(e1, . . . , en; x1, . . . , xn) {q[x1,...,xn / w1,...,wm]}

Note the use of the implication operation ⇒ in the (Cons) rule. This operation
is formally defined in the next section which also discusses the axiomatization
of this operation. After treating reasoning about (implication between) proba-
bilistic predicates in the next section we apply the Hoare rules in the example
derivation in section 5.

4 A calculus for probabilistic predicates.

The important ‘rule of consequence’ (Cons) in the Hoare style logic allows
strengthening of the precondition and weakening of the postcondition. To apply
this rule we need to determine which implications are valid. In this section we
provide results allowing reasoning about equivalence of predicates and the im-
plication between predicates. These results consist of a conservative extension
result, allowing the use of standard first order reasoning methods, a congru-
ence result allowing equational reasoning and a list of equivalences capturing
the arithmetical operators, usable as axioms in the equational reasoning.

The key relation in our ‘calculus’ is equivalence ≡ of predicates.

6 Jerry den Hartog

Definition 4. We write p ⇒ p′ when for all θ, I if (θ, I) |= p then (θ, I) |= p′.
and p ≡ p′ if p ⇒ p′ and p′ ⇒ p.

The calculus is sound with respect to this semantics of ⇒ (for proofs see the
report version of this paper). Other issues such as completeness and decidability
are discussed in section 6. We first present the congruence results for ⇒.

Lemma 5 (Congruence). If p ⇒ p′ then op p ⇒ op p′ for op ∈ {∃i :,∀i :
, ρ·, c? } and ¬ p′ ⇒ ¬ p.

If p ⇒ p′ and q ⇒ q′ then p op q ⇒ p′ op q′ for op ∈ {∧,∨,+,⊕ρ } and
p′ → q ⇒ p → q′.

As a direct consequence we also have that ≡ is a congruence for all operators.

4.1 Non-probabilistic reasoning

The interpretation of the logical constructions is standard. If we consider the
probabilistic and arithmetical constructions to be ‘black boxes’ we can do clas-
sical reasoning. To be more precise, for a fixed state θ the construct P() is just
another function symbol in the probabilistic (i.e. real valued) expressions. When
reasoning non-probabilistically we ignore the state θ. Thus the exact function
represented by P() is not known, only that it is some function to [0, 1]. Similarly
any arithmetical construct, e.g. p+q, can be seen as a black box, i.e. an unknown
function which describes a boolean.

Definition 6. We use dp() to denote the context in which the logical variables
i1, . . . , in occurring in dp have been replaced by open places (denoted t1, . . . ,tn)
and dp(j1, . . . , jn) for the predicate obtained by substituting j1, . . . , jn in the open
places. We introduce a fresh n-ary function symbol rdp() to denote an unknown
function to [0, 1]. Similarly, p() denotes the context obtained from p and bp() a
fresh boolean function symbol.

Using the function symbols above we define ‘black box interpretations’ for
expressions and probabilistic predicates. We obtain expression BB(e) from ex-
pression e by replacing each occurrence of P(dp) by the corresponding function
rdp(i1, . . . , in). A black box interpretation BB(p) of a probabilistic predicate p is
a deterministic predicate satisfying:

BB(p) = bp() or
BB(p) = p for p P-free, or
BB(p) = BB(e) ≤ BB(e′) for p = e ≤ e′, or
BB(p) = BB(q) op BB(q′) for p = q op q′, op ∈ {∧,∨,→ }, or
BB(p) = opBB(q) for p = op q, op ∈ {∀i,∃i,¬}

Lemma 7. If I |=d BB(p) then for any θ we have (I, θ) |= p.
If |=d BB(p) → BB(q) then p ⇒ q.
If |=d BB(p) ↔ BB(q) then p ≡ q.

The intuition behind this result is as follows: The validity of BB(p) is obtained
irrespective of the value given by the functions rdp() and bp(). By fixing θ we
only select one possible function for which the predicate is true.

Towards mechanized correctness proofs for cryptographic algorithms 7

Example 8. (i) i = j ⇒ P(x = i) = P(x = j) can be derived by noting:
BB(P(x = i) = P(x = j)) = (rx=t(i) = rx=t(j)) and |=d (i = j) → (rx=t(i) =
rx=t(j)).

(ii) p + q ∧ p + q ≡ p + q can be derived by noting: BB(p + q ∧ p + q) =
BB(p+q)∧BB(p+q) = bp+q()()∧bp+q()() and |=d bp+q()()∧bp+q()() ↔ bp+q()().

(iii) We cannot derive (p ∧ p) + q ≡ p + q directly using lemma 7 as we
cannot ‘look into’ the black box (p ∧ p) + q. However, we can first note that
p ∧ p ≡ p and then apply the congruence result.

Thus the non-probabilistic part of the reasoning is standard. We assume the
reader is familiar with ways of formalizing such reasoning and we will be less
precise in this part of the reasoning.

4.2 The axioms

To deal with the arithmetical operators we provide a list of equivalences that can
be used as an axiomatic basis of equational reasoning. The equivalences provide
basic properties and distributivity laws for each of the operators. We do not
treat the operator ⊕ρ as p⊕ρ p′ is equivalent to ρ · p + (1− ρ) · p′. For validity
proofs of the axioms we refer to the technical report version of this paper.

In the axioms we will want to state things about validity of deterministic
predicates (e.g. dp → dp′). However, deterministic predicate may contain pro-
gram variables which are not allowed in probabilistic predicates (outside of a P()
construction). In this case by validity we mean that the deterministic predicate
must hold, no matter which value the program variables have. We introduce the
new notation 2(dp) capturing this notion of validity.

Definition 9. Let x1, . . . xn be the program variables occurring in dp and let
j1, . . . jn be fresh logical variables (i.e. not occurring in dp). Then

2(dp) ::= ∀j1, . . . jn : dp[j1/x1, . . . jm/xm]

Note that 2(dp) is a P-free predicate which holds exactly when dp is fulfilled by
every deterministic state σ, i.e. (θ, I) |= 2(dp) iff ∀σ : (σ, I) |=d dp.

Probabilistic axioms The following axioms capture basic properties of prob-
abilistic states.

P(false) = 0 ≡ true (A1)
P(true) ≤ 1 ≡ true (A2)

P(dp ∨ dp′) = P(dp) + P(dp′)− P(dp ∧ dp′) ≡ true (A3)
2(dp → dp′) ⇒ P(dp) ≤ P(dp′) (A4)

The first three axioms state that the given equations on chances are tautologies.
They follow directly from the properties of (sub-)probability measures. Recall
that incomplete states (e.g. caused by non-termination) may satisfy P(true) <
1. The last axiom lifts reasoning on deterministic predicates to probabilistic

8 Jerry den Hartog

predicates: If dp → dp′ must hold then the probability P(dp) of dp cannot be
more than the probability P(dp′) of dp′. (Note that any axiom of the form p ⇒ q
could be equivalently written as p ≡ p ∧ q thus still fits within the equational
system.)

Example 10. (i) We obtain

2(dp ↔ dp′) ⇒ P(dp) = P(dp′)

directly from A4.
(ii) We have

P(dp) = P(true)− P(¬dp) ≡ true

In the derivation we streamline the notation slightly, writing er1 = er2 = . . . =
ern rather than true ≡ (er1 = er2) ≡ . . . ≡ (er1 = er2) ∧ . . . ∧ (ern−1 =
ern) ≡ (er1 = ern). Using this notation gives

P(dp′) [A3] = P(dp ∧ ¬dp′) + P(dp ∨ ¬dp)− P(¬dp)
[ex. 10(i)] = P(false) + P(true)− P(¬dp)

[A1] = 0 + P(true)− P(¬dp)
= P(true)− P(¬dp)

Axioms for · The following two sets of axioms capture the behaviour of the
‘·’-operator. We first present basic axioms followed by distributivity laws.

ρ · (P(dp) = r) ≡ P(dp) = ρ · r ∧ P(true) ≤ ρ (A5)
ρ · (ρ′ · p) ≡ (ρ · ρ′) · p (A6)

ρ · p ≡ p ∧ P(true) ≤ ρ if p is P-free (A7)

Axiom A5 characterizes the · operator: The probability of all events is scaled.
The probability of the event dp becomes ρ ·r and no event can have a probability
greater than ρ·1 do to the scaling. The second axiom states that first scaling with
ρ′ and then with ρ is the same as scaling directly with ρ ·ρ′. As a P-free predicate
does not depend on the probabilistic state, it is not influenced by scaling of this
state. The scaling only affects the total probability that the state can have; after
scaling it can be at most ρ.

Example 11. Applying · influences the state but not the logical variables:
1
2 · (P(x = 1) = 1

2) ⇒ P(x = 1) = 1
4

1
2 · (r = 1

2) ⇒ r = 1
2

1
2 · (P(x = 1) = r ∧ r = 1

2) ⇒ P(x = 1) = 1
2r ∧ r = 1

2 ⇒ P(x = 1) = 1
4

The next set of axioms capture the interplay between · and the other operators
in a number of distributivity laws. The operator · distributes over the other
operators in a straightforward manner. Only for + there is a complication which
is explained below the rules.

Towards mechanized correctness proofs for cryptographic algorithms 9

ρ · (p op p′) ≡ (ρ · p) op (ρ · p′) (A8)
ρ · (op’ p) ≡ op’(ρ · p′) (A9)
ρ · (p + q) ≡ ∃r : ρ · (p ∧ P(true) ≤ r) + ρ · (q ∧ P(true) ≤ 1− r) (A10)

with op ∈ {∧,∨,⊕ρ′}, op’ ∈ {∃i :,∀i :, ρ′·, c?} and r a fresh variable not occurring
in p or q. The scaling operator · distributes straightforwardly over all other
operators except + for which there is a complication: If θ satisfies p and θ′

satisfies p′ and θ + θ′ is a probabilistic state then this state satisfies p + p′.
However, θ + θ′ may have a total mass greater than 1. In this case first adding
and then scaling, as in e.g. 1

2 · (p + q) is not possible, however, if the states are
first scaled then they can be added, as in 1

2 · p + 1
2 · q, without exceeding the

maximum total probability of 1. Axiom A10 captures that ρ · (p+ q) is the same
as ρ · p + ρ · q as long as the total probability of 1 is not exceeded.

Axioms for ? In giving the characterization of the ? operator we have the
complication that part of the state has been removed. The probability of events
will depend on the part of the state that has been removed.

c?(P(dp) = r) ≡ P(¬c) = 0 ∧ ∃rδ : P(dp) = r − rδ ∧
0 ≤ rδ ≤ 1− P(true) ∧2(dp → c) → rδ = 0 (A11)

c?(c′?p) ≡ (c ∧ c′)?p (A12)
c?p ≡ p ∧ P(¬c) = 0 if p is P-free (A13)

true?p ≡ p (A14)
2(c ↔ c′) ∧ c?p ⇒ c′?p (A15)

By removing the part of the state where c does not hold, the chance of ¬c
becomes 0 and the probability of dp is decreased by some amount rδ. Clearly rδ

is at most 1− P(true) which is the total amount of probability that is missing.
If dp logically implies c the probability of dp cannot be decreased by removing
states not satisfying c so rδ must be 0. (Also, if dp implies ¬c then all states
satisfying dp will be removed giving rδ = r but this is already implied by the
fact that P(¬c) = 0.) The other axioms are relatively straightforward.

Example 12. (i) The total probability of c?p is the probability of c in p.

c?(P(c) = r) ⇒ [A11] P(¬c) = 0 ∧ ∃rδ : P(c) = r − rδ ∧ rδ = 0
⇒ P(¬c) = 0 ∧ P(c) = r

⇒ [A3] P(c ∨ ¬c) = 0 + r + 0
⇒ P(true) = r

(ii) Similarly, if c is implied by dp then the probability of dp will not change
by applying c?.

2(dp → c) ∧ c?(P(dp) = r) ⇒ [A11] ∃rδ : P(dp) = r − rδ ∧ rδ = 0 ⇒ P(dp) = r

10 Jerry den Hartog

The next set of axioms provide distributivity laws for ?.

c?(p ∨ q) ≡ (c?p) ∨ (c?q) (A16)
c?(∃i : p) ≡ ∃i : (c?p) (A17)
c?(p + q) ≡ ∃r : c?(p ∧ P(true) ≤ r) + c?(q ∧ P(true) ≤ 1− r) (A18)

with i not free in c and r a fresh variable not occurring in p or q. With dis-
tributivity over + we have a similar situation as for ·; c?(p + q) is the same as
c?p + c?q as long as the total probability of 1 is not exceeded. The operator ?
does not distribute over ∧ (nor over ∀i :), c?(p ∧ q) 6≡ c?p ∧ c?q, as p and q may
have conflicting requirements for the part of the state which is removed by first
applying the c? operator. We have to suffice with implication and a special case:

c?(∀i : p) ⇒ ∀i : c?p (A19)
c?(p ∧ q) ⇒ c?p ∧ c?q (A20)
c?(p ∧ q) ≡ c?p ∧ c?q if p is P-free (A21)

For a P-free predicate the equivalence does hold as a P-free predicate is not
influenced by the ? operator. Note that a similar ‘P-free-axiom’ for ∀ already
follows using (A13).

Axioms for + The following two sets of axioms capture the behaviour of the
+ operator. We first present basic axioms followed by distributivity laws.

P(dp) = r + P(dp′) = r′ ≡ r ≤ P(dp) ∧ r′ ≤ P(dp′) ∧
P(dp ∧ dp′) ≤ r + r′ ≤ P(dp ∨ dp′) (A22)

p + q ≡ q + p (A23)
(p1 + p2) + p3 ≡ p1 + (p2 + p3) (A24)

p + p′ ≡ p ∧ (true + p′) if p is P-free (A25)

The first rule provides a characterization of the + operator: Two partial states
are combined. The probability of an event cannot be less in the combined state
than it already is in one of the two parts. The probability of the event dp ∧ dp′

is at most r + r′ because is probability is at most r in the left hand part and at
most r′ in the right hand part. Similarly the probability of dp ∨ dp′ is at least
r + r′ because its probability is at least r and r′ in the respective parts. The
second rule (commutativity) and third rule (associativity) are standard while
the last rule allows moving ‘non-probabilistic’ properties to outside the +.

Example 13. Taking dp′ equal to dp in the first rule gives
P(dp) = r + P(dp) = r′

[A22] ≡ r ≤ P(dp) ∧ r′ ≤ P(dp) ∧ P(dp ∧ dp) ≤ r + r′ ≤ P(dp ∨ dp)
[A4] ≡ r ≤ P(dp) ∧ r′ ≤ P(dp) ∧ P(dp) ≤ r + r′ ≤ P(dp)

[r, r′ ≥ 0] ≡ P(dp) = r + r′

(Note that the remark [r, r′ ≥ 0] in the last equivalence is needed only for the
reverse implication.)

Towards mechanized correctness proofs for cryptographic algorithms 11

Finally, we provide a set of distributivity laws for + which are similar to those
for c?:

(p ∨ p′) + q ≡ (p + q) ∨ (p′ + q) (A26)
(∃i : p) + q ≡ ∃i : (p + q) i not free in q (A27)
(∀i : p) + q ⇒ ∀i : (p + q) if i not free in q (A28)
(p ∧ p′) + q ⇒ (p + q) ∧ (p′ + q) (A29)
(p ∧ p′) + q ≡ (p + q) ∧ (p′ + q) if p is P-free (A30)

This completes the axiom system. In the next section we illustrate the calculus
by axiomatizing the main Hoare logic derivation from the verification of ElGamal
presented in [5].

5 Applying the calculus in the El-Gamal proof.

In this section we show how the calculus can be applied by treating a derivation
from [5]. The proof outline in Table 1 represents this derivation which shows
that the program, a transformed security game, is similar to a coin toss. The
complete proof of El-Gamal security [5] uses several transformations to reach
this game. We first recall some short-hand notation and results from [5].

Definition 14. We use I(e, e′) to denote that expressions e and e′ are indepen-
dent:

I(e, e′) ::= ∀i, j : P(e = i ∧ e′ = j) = P(e = i) · P(e′ = j)

We use RS,S′(e, e′) to denote that expressions e, e′ have independent uniform
distributions over their respective domains S, S′:

RS,S′(e, e′) ::= ∀i, j : P(e = i ∧ e′ = j) = 1/|S| · 1/|S′|

We assume it is clear how this can be extended to any number of expressions.

As a basic result we have that ‘independent uniform distributed’ variables are
exactly that, independent and uniformly distributed. Also we have that if an
expression is independent of the arguments of a function then it is independent
of the outcome.
Lemma 15.

RS,S′(e, e′) ≡ RS(e) ∧RS′(e′) ∧ I(e, e′)
I(e, e′) ⇒ I(e, f(e′))

The transformed security game is the program s given by the numbered lines in
Table 1. For this program we derive

{RZ∗
q 3,RND,Bool(v1, v2, v3, v4, v5)} s {P(x1) = 1/2}

In otherwords, we show that given random inputs the chance of the event x1,
which represents correctly guessing which message was encoded (m0 or m1), is
equal to half.

12 Jerry den Hartog

{RZ∗
q 3,RND,Bool(v1, v2, v3, v4, v5)}

(I1)⇒ (A)

{RZ∗
q 3,RND,Bool(v1, v2, v3 · A0(v1, v4), v4, v5)

∧RZ∗
q 3,RND,Bool(v1, v2, v3 · A1(v1, v4), v4, v5)}

m0 := A0(v1,v4); (1)

m1 := A1(v1,v4); (2)

p0
4
= {RZ∗

q 3,RND,Bool(v1, v2, v3 · m0, v4, v5)
∧RZ∗

q 3,RND,Bool(v1, v2, v3 · m1, v4, v5)}
{RZ∗

q 3,RND,Bool(v1, v2, v3, v4, v5)}
if v5 = false then (3)

{(¬v5)?p0}
(I2)⇒ {(¬v5)?RZ∗

q 3,RND,Bool(v1, v2, v3 · m0, v4, v5)}
tmp := v3 · m0 (3a)

p1
4
= {(¬v5)?RZ∗

q 3,RND,Bool(v1, v2, tmp, v4, v5)}
else

{(v5)?p0}
(I3)⇒ {(v5)?RZ∗

q 3,RND,Bool(v1, v2, v3 · m1, v4, v5)}
tmp := v3 · m1 (3b)

p2
4
= {(v5)?RZ∗

q 3,RND,Bool(v1, v2, tmp, v4, v5)}
fi

{p1 + p2} (I4)⇒ {RZ∗
q 3,RND,Bool(v1, v2, tmp, v4, v5)}

(I5)⇒
{RBool(v5) ∧ I(v5, A2(v1, v2, tmp, v4))}

b := A2(v1,v2, tmp,v4) (4)

{RBool(v5) ∧ I(v5, b)} (I6)⇒ {P(v5 = b) = 1/2}
if v5 = b then (5)

{(v5 = b)?(P(v5 = b) = 1/2)} (I7)⇒ {P(true) = 1/2}
x1 := true (5a)

{P(x1) = 1/2}
else

{(v5 6= b)?(P(v5 = b) = 1/2)} (I8)⇒ {P(false) = 0}
x1 := false (5b)

{P(x1) = 0}
fi

{(P(x1) = 1/2) + (P(x1) = 0)} (I9)⇒
{P(x1) = 1/2} (B)

Table 1. Derivation of {RZ∗
q 3,RND,Bool(v1, v2, v3, v4, v5)} s {P(x1) = 1/2}

Towards mechanized correctness proofs for cryptographic algorithms 13

We describe how to derive the Hoare triple in Table 1, in bottom up fashion.
In the last line we use rule (Cons). To show implication (I9), we apply the result
of example 13.

Then we apply rule (If). Implication (I8) follows from Axiom (A1). To show
implication (I7), we apply the first result of example 12.

To derive implication (I6) we first note that from the definition of RBool we
get RBool(v5) ⇒ P(v5) = 1

2
∧P(¬v5) = 1

2
⇒ P(true) = 1. We then check the

probability of v5 = b:

P(v5 = b) = P((v5 ∧ b) ∨ (¬v5 ∧ ¬b)) = P((v5 ∧ b)) + P(¬v5 ∧ ¬b)− 0
[I(v5, b)] = P(v5) · P(b) + P(¬v5) · P(¬b)
[R(v5)] = 1

2 · P(b) + 1
2 · P(¬b) = 1

2 · (P(b) + P(¬b)) = 1
2 · P(b ∨ ¬b)

= 1
2 · P(true) = 1

2 · 1 = 1
2

As the next step we use rule (Assign). Implication (I5) follows from Lemma 15.
For implication (I4) we use note that (using shorthand ρ = 1/(q3 ·r ·2)) we have

(¬v5)?RZ∗
q 3,RND,Bool(v1, v2, tmp, v4, v5)

[A11] ⇒ P(v5 = true) = 0
[A4] ⇒ P(v1 = i1, v2 = i2, tmp = i3, v4 = i4, v5 = true) = 0

(v5)?RZ∗
q 3,RND,Bool(v1, v2, tmp, v4, v5)
[Def. R] ⇒ (v5)?(P(v1 = i1, v2 = i2, tmp = i3, v4 = i4, v5 = true) = ρ)

[ex. 12(ii)] ⇒ P(v1 = i1, v2 = i2, tmp = i3, v4 = i4, v5 = true) = ρ

Combining these two facts by using the congruence lemma for + and then ap-
plying the result in example 13 gives

p1 + p2 ⇒ P(v1 = i1, v2 = i2, tmp = i3, v4 = i4, v5 = true) = 0 + ρ = ρ

Symmetrically we also get

p1 + p2 ⇒ P(v1 = i1, v2 = i2, tmp = i3, v4 = i4, v5 = false) = ρ + 0 = ρ

Thus

p1 + p2 ⇒ ∀i5 : P(v1 = i1, v2 = i2, tmp = i3, v4 = i4, v5 = i5) = ρ

Forall introduction for the free variables i1, i2, i3, i4 gives us implication (I4).
The following steps are straightforward from rules (If) and (Assign). Impli-

cations (I2) and (I3) are trivial.
Finally for implication (I1) we use the assumption that multiplication · has

an inverse in the group. We use this assumption in the form of the following two
properties:

∀k, l : ∃m : k ·m = l (Mul I)
∀k, l,m : (k ·m = l ·m) → k = l (Mul II)

14 Jerry den Hartog

Using these assumptions we derive implication (I1) as follows (again using ρ as
a shorthand for 1/(q3 · r · 2))

RZ∗
q 3,RND,Bool(v1, v2, v3, v4, v5)

⇒ ∀j : P(v1 = i1, v2 = i2, v3 = j, v4 = i4, v5 = i5) = ρ

[Mul I] ⇒ ∀i3 : ∃j : j · f(i1, i4) = i3 ∧
P(v1 = i1, v2 = i2, v3 = j, v4 = i4, v5 = i5) = ρ

[Mul II] ⇒ ∀i3 : ∃j : 2(v3 = j ↔ v3 · f(i1, i4) = i3) ∧
P(v1 = i1, v2 = i2, v3 = j, v4 = i4, v5 = i5) = ρ

[ex.10(i)] ⇒ ∀i3 : ∃j : P(v1 = i1, v2 = i2, v3 · f(i1, i4) = i3, v4 = i4, v5 = i5) = ρ

⇒ ∀i3 : P(v1 = i1, v2 = i2, v3 · f(v1, v4) = i3, v4 = i4, v5 = i5) = ρ

⇒ RZ∗
q 3,RND,Bool(v1, v2, v3 · f(v1, v4), v4, v5)

6 Conclusions and Future work

In this paper we take an important step toward mechanizing the proofs in the
methodology introduced in [5] by providing a calculus for reasoning about the
validity of implication between probabilistic predicates. The usefulness of the
calculus from this perspective is illustrated by showing how it can be used to
replace the partly semantical reasoning of [5] in the main Hoare style derivation
for the ElGamal correctness proof. The next step in the mechanization is the
implementation of probabilistic predicates in a theorem proving system, such
as PVS, HOL, etc. We envision three possible levels of abstraction: The first,
most abstract, level is an implementation of the calculus. There is no notion of
probabilistic state and reasoning consist of application of the calculus rules and
use of the proof checker’s built in mechanisms for reasoning about deterministic
predicates. The second level introduces probabilistic states in terms of abstract
functions and probabilistic properties of these functions as axioms. This allows
modeling the semantics of predicates and deriving results directly from the prob-
abilistic properties and showing the correctness of the calculus rules themselves.
The final level defines probabilistic states as countable sums and uses arithmeti-
cal properties of such sums to derive results. In this way we can derive results
directly from properties of the data types (such as real numbers). Of course, one
can mix the levels as needed; e.g. results in a lower level can be added as axioms
in a higher level. In this way we can justify results based on elemental properties
while still reasoning about program at a high level of abstraction.

In addition to the implementation of probabilistic predicates in a proof
checker there is the step to Hoare logic proof outlines. Checking correct applica-
tion of the Hoare logic rules can be implemented in the proof checker or could
be done by a pre-processor which does syntactic checks and outputs proof obli-
gations in the form of implications to be checked in your favorite (probabilistic
predicate enabled) proof checker.

We have not addressed issues such as completeness, decidability and the abil-
ity to automatically derive proofs. In the target application area we typically al-

Towards mechanized correctness proofs for cryptographic algorithms 15

ready have the proofs but need an intuitive way of formally expressing the prop-
erties and proofs and check them for oversights. Thus we focus on expressiveness
and minimizing the step from existing proof to formalization. The framework [12]
provides a well developed quantitative weakest precondition approach which al-
lows calculating expectations. However, translating existing proofs to this setting
seems to require more adaption and/or the use of meta-logical statements in the
formulation of the cryptographic properties and algorithms. With reasonable
restrictions it is also possible to define weakest preconditions and obtain a com-
plete and decidable reasoning system in the probabilistic Hoare logic setting [4].
Though the size of these predicates may quickly become unmanageable for our
purpose, it may be possible to use similar techniques to build decidable and
complete lower levels.

Besides mechanization of the existing framework we aim at extending the
techniques to different classes of cryptographic algorithms and different types of
security properties. Finally, for further discussion of related work, especially in
the area of verification of cryptographic protocols we refer to [5].

References

1. M. Bellare and P. Rogaway. The game-playing technique, December 2004. At
http://www.cs.ucdavis.edu/∼rogaway/papers/games.html.

2. D. Boneh. The decisional diffie-hellman problem, 1998. In Proceedings of the 3rd
Algorithmic Number Theory Symposium, LNCS Vol. 1423, Springer-Verlag, 1998.

3. D. Boneh and M. K. Franklin. Identity-based encryption from the weil pairing. In
CRYPTO’01, pages 213–229. Springer-Verlag, 2001.

4. R. Chadha, L. Cruz-Filipe, P. Mateus, and A. Sernadas. Reasoning about proba-
bilistic sequential programs. Theor. Comput. Sci., 379(1-2):142–165, 2007.

5. R. J. Corin and J. I. den Hartog. A probabilistic hoare-style logic for game-based
cryptographic proofs. In M. Bugliesi, B. Preneel, and V. Sassone, editors, ICALP
2006 track C, Venice, Italy, volume 4052 of Lecture Notes in Computer Science,
pages 252–263, Berlin, July 2006. Springer-Verlag.

6. T. ElGamal. A public-key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory, IT-31:469–472, 1985.

7. D. Galindo. Boneh-franklin identity based encryption revisited. In ICALP, pages
791–802, 2005.

8. S. Halevi. A plausible approach to computer-aided cryptographic proofs, 2005. At
http://eprint.iacr.org/2005/181/.

9. J.I. den Hartog and E.P. de Vink. Verifying probabilistic programs using a Hoare
like logic. International Journal of Foundations of Computer Science, 13(3):315–
340, 2002.

10. C.A.R. Hoare. An axiomatic basis for computer programming. Communications
of the ACM, 12:576–580, 1969.

11. R. Impagliazzo and B. M. Kapron. Logics for reasoning about cryptographic con-
structions. Journal of Computer and Systems Sciences, 72(2), 2006.

12. C. Morgan, A. McIver, and K. Seidel. Probabilistic predicate transformers. ACM
Trans. Program. Lang. Syst., 18(3):325–353, 1996.

13. V. Shoup. Sequences of games: a tool for taming complexity in security proofs,
May 2005. At http://www.shoup.net/papers/games.pdf.

